Overview

miRToolsGallery is a database of miRNA tools. It provides the following services: (a) Search(b) Filter and (c) Rank the tools. Our database aim to make it easy for researchers to find the right tools or data source for their own specific study in miRNA field. And it’s also very convenient for writing a tools review paper. Now we have collect above 1000 tools. miRToolsGallery will update when every new 100 tools add in. The first public online was in 1st Oct, 2016, and latest update time is 22nd April, 2018(v1.2). 

  • Filter and Rank : Give user max flexibility to filter and rank the tools and return a table view.
  • Tutorials : Give two application examples and tell user how to use miRToolsGallery.
  • Tags Gallery : Print Word Cloud for the tags.
  • Logo Gallery : Randomly list logo of tools in the database, give each tool evenly opportunity to be find by user.  
  • Review Paper Gallery : List the collection of miRNA tools review papers.
  • Submit Tools : We still need all user's kindly help to improve the miRToolsGallery.
  • Contact us : User can get in touch with us through this page to send feedback.

treebic

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Clustering methods are a useful and common first step in gene expression studies, but the results may be hard to interpret. We bring in explicitly an indicator of which genes tie each cluster, changing the setup to biclustering. Furthermore, we make the indicators hierarchical, resulting in a hierarchy of progressively more specific biclusters. A non-parametric Bayesian formulation makes the model rigorous yet flexible and computations feasible. The model can additionally be used in information retrieval for relating relevant samples.

Rating: 
Average: 5 (1 vote)

BCmicrO

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are 19-25 nucleotides non-coding RNAs known to have important post-transcriptional regulatory functions. The computational target prediction algorithm is vital to effective experimental testing. However, since different existing algorithms rely on different features and classifiers, there is a poor agreement among the results of different algorithms. To benefit from the advantages of different algorithms, we proposed an algorithm called BCmicrO that combines the prediction of different algorithms with Bayesian Network.

Rating: 
Average: 5 (1 vote)

miRNAprediction

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are nonprotein coding RNAs between 20 and 22 nucleotides long that attenuate protein production. Different types of sequence data are being investigated for novel miRNAs, including genomic and transcriptomic sequences. A variety of machine learning methods have successfully predicted miRNA precursors, mature miRNAs, and other nonprotein coding sequences. MirTools, mirDeep2, and miRanalyzer require "read count" to be included with the input sequences, which restricts their use to deep-sequencing data.

Rating: 
Average: 5 (1 vote)

ToppMiR

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Identifying functionally significant microRNAs (miRs) and their correspondingly most important messenger RNA targets (mRNAs) in specific biological contexts is a critical task to improve our understanding of molecular mechanisms underlying organismal development, physiology and disease. However, current miR-mRNA target prediction platforms rank miR targets based on estimated strength of physical interactions and lack the ability to rank interactants as a function of their potential to impact a given biological system.

Rating: 
Average: 5 (1 vote)

JBCB

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Current miRNA target prediction tools have the common problem that their false positive rate is high. This renders identification of co-regulating groups of miRNAs and target genes unreliable. In this study, we describe a procedure to identify highly probable co-regulating miRNAs and the corresponding co-regulated gene groups.

Rating: 
Average: 5 (1 vote)

A combinatorial approach to determine the context-dependent role in transcriptional and posttranscriptional regulation in Arabidopsis thaliana

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

While progresses have been made in mapping transcriptional regulatory networks, posttranscriptional regulatory roles just begin to be uncovered, which has arrested much attention due to the discovery of miRNAs. Here we demonstrated a combinatorial approach to incorporate transcriptional and posttranscriptional regulatory sequences with gene expression profiles to determine their probabilistic dependencies.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to miRToolsGallery RSS