piRNA
Recent interests, such as RNA interference and antisense RNA regulation, strongly motivate the problem of predicting whether two nucleic acid strands interact.
miRToolsGallery is a database of miRNA tools. It provides the following services: (a) Search,(b) Filter and (c) Rank the tools. Our database aim to make it easy for researchers to find the right tools or data source for their own specific study in miRNA field. And it’s also very convenient for writing a tools review paper. Now we have collect above 1000 tools. miRToolsGallery will update when every new 100 tools add in. The first public online was in 1st Oct, 2016, and latest update time is 22nd April, 2018(v1.2).
Recent interests, such as RNA interference and antisense RNA regulation, strongly motivate the problem of predicting whether two nucleic acid strands interact.
MicroRNAs (miRNAs) regulate several biological processes through post-transcriptional gene silencing. The efficiency of binding of miRNAs to target transcripts depends on the sequence as well as intramolecular structure of the transcript. Single Nucleotide Polymorphisms (SNPs) can contribute to alterations in the structure of regions flanking them, thereby influencing the accessibility for miRNA binding.
MicroRNAs (miRNAs) are small RNA molecules that modulate gene expression through degradation of specific mRNAs and/or repression of their translation. miRNAs are involved in both physiological and pathological processes, such as apoptosis and cancer. Their presence has been demonstrated in several organisms as well as in viruses. Virus encoded miRNAs can act as viral gene expression regulators, but they may also interfere with the expression of host genes. Viral miRNAs may control host cell proliferation by targeting cell-cycle and apoptosis regulators.
Imprinted noncoding RNAs (ncRNAs) are expressed mono-allelically in a parent-of-origin-dependent manner, which is mainly evident in mammals. Lying at a crossroad between imprinted genes and ncRNAs, imprinted ncRNAs show distinct features. They are likely to function in nontraditional ways compared to non-imprinted ncRNAs, and are much more responsible for the mechanism of genomic imprinting compared to imprinted protein-coding genes. An increasing number of human diseases have been shown to be related to abnormalities in imprinted ncRNAs.
Co-expression networks have proven effective at assigning putative functions to genes based on the functional annotation of their co-expressed partners, in candidate gene prioritization studies and in improving our understanding of regulatory networks. The growing number of genome resequencing efforts and genome-wide association studies often identify loci containing novel genes and there is a need to infer their functions and interaction partners.
Short interfering RNAs (siRNAs) are a popular method for gene-knockdown, acting by degrading the target mRNA. Before performing experiments it is invaluable to locate and evaluate previous knockdown experiments for the gene of interest. The siRNA database provides a gene-centric view of siRNA experimental data, including siRNAs of known efficacy and siRNAs predicted to be of high efficacy by a combination of methods. Linked to these sequences is information such as siRNA thermodynamic properties and the potential for sequence-specific off-target effects.