You are here

miREC

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Status:

Platform:

Implement Technique:

Species:

Pubmed IDs: 
Rating: 
Average: 5 (1 vote)

Endometrial cancer (EC) is the most frequently diagnosed gynecological malignancy and the fourth most common cancer diagnosis overall among women. As with many other forms of cancer, it has been shown that certain miRNAs are differentially expressed in EC and these miRNAs are believed to play important roles as regulators of processes involved in the development of the disease. With the rapidly growing number of studies of miRNA expression in EC, there is a need to organize the data, combine the findings from experimental studies of EC with information from various miRNA databases, and make the integrated information easily accessible for the EC research community.
The miREC database is an organized collection of data and information about miRNAs shown to be differentially expressed in EC. The database can be used to map connections between miRNAs and their target genes in order to identify specific miRNAs that are potentially important for the development of EC. The aim of the miREC database is to integrate all available information about miRNAs and target genes involved in the development of endometrial cancer, and to provide a comprehensive, up-to-date, and easily accessible source of knowledge regarding the role of miRNAs in the development of EC. Database URL: http://www.mirecdb.org .
Several databases have been published that store information about all miRNA targets that have been predicted or experimentally verified to date. It would be a time-consuming task to navigate between these different data sources and literature to gather information about a specific disease, such as endometrial cancer. The miREC database is a specialized data repository that, in addition to miRNA target information, keeps track of the differential expression of genes and miRNAs potentially involved in endometrial cancer development. By providing flexible search functions it becomes easy to search for EC-associated genes and miRNAs from different starting points, such as differential expression and genomic loci (based on genomic aberrations).[1]


References