You are here

De Novo SVM Classification of Precursor MicroRNAs

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Status:

Implement Technique:

Species:

Pubmed IDs: 
Rating: 
Average: 5 (1 vote)

MicroRNAs (miRNAs) are small ncRNAs participating in diverse cellular and physiological processes through the post-transcriptional gene regulatory pathway. Critically associated with the miRNAs biogenesis, the hairpin structure is a necessary feature for the computational classification of novel precursor miRNAs (pre-miRs). Though many of the abundant genomic inverted repeats (pseudo hairpins) can be filtered computationally, novel species-specific pre-miRs are likely to remain elusive.
miPred is a de novo Support Vector Machine (SVM) classifier for identifying pre-miRs without relying on phylogenetic conservation. To achieve significantly higher sensitivity and specificity than existing (quasi) de novo predictors, it employs a Gaussian Radial Basis Function kernel (RBF) as a similarity measure for 29 global and intrinsic hairpin folding attributes. They characterize a pre-miR at the dinucleotide sequence, hairpin folding, non-linear statistical thermodynamics and topological levels. Trained on 200 human pre-miRs and 400 pseudo hairpins, miPred achieves 93.50% (5-fold cross-validation accuracy) and 0.9833 (ROC score). Tested on the remaining 123 human pre-miRs and 246 pseudo hairpins, it reports 84.55% (sensitivity), 97.97% (specificity) and 93.50% (accuracy). Validated onto 1918 pre-miRs across 40 non-human species and 3836 pseudo hairpins, it yields 87.65% (92.08%), 97.75% (97.42%) and 94.38% (95.64%) for the mean (overall) sensitivity, specificity and accuracy. Notably, A.mellifera, A.geoffroyi, C.familiaris, E.Barr, H. Simplex virus, H.cytomegalovirus, O.aries, P.patens, R.lymphocryptovirus, Simian virus and Z.mays are unambiguously classified with 100.00% (sensitivity) and >93.75% (specificity).
Data sets, raw statistical results and source codes are available at http://web.bii.a-star.edu.sg/~stanley/Publications[1]


References