You are here

miRandola

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Status:

Platform:

Implement Technique:

Species:

Pubmed IDs: 
Rating: 
Average: 5 (2 votes)

MicroRNAs are small noncoding RNAs that play an important role in the regulation of various biological processes through their interaction with cellular messenger RNAs. They are frequently dysregulated in cancer and have shown great potential as tissue-based markers for cancer classification and prognostication. microRNAs are also present in extracellular human body fluids such as serum, plasma, saliva, and urine. Most of circulating microRNAs are present in human plasma and serum cofractionate with the Argonaute2 (Ago2) protein. However, circulating microRNAs have been also found in membrane-bound vesicles such as exosomes. Since microRNAs circulate in the bloodstream in a highly stable, extracellular form, they may be used as blood-based biomarkers for cancer and other diseases. A knowledge base of extracellular circulating miRNAs is a fundamental tool for biomedical research. In this work, we present miRandola, a comprehensive manually curated classification of extracellular circulating miRNAs. miRandola is connected to miR¨°, the miRNA knowledge base, allowing users to infer the potential biological functions of circulating miRNAs and their connections with phenotypes. The miRandola database contains 2132 entries, with 581 unique mature miRNAs and 21 types of samples. miRNAs are classified into four categories, based on their extracellular form: miRNA-Ago2 (173 entries), miRNA-exosome (856 entries), miRNA-HDL (20 entries) and miRNA-circulating (1083 entries). miRandola is available online at: http://atlas.dmi.unict.it/mirandola/index.html.[1]

miRandola (http://mirandola.iit.cnr.it/) is a database of extracellular non-coding RNAs (ncRNAs) that was initially published in 2012, foreseeing the relevance of ncRNAs as non-invasive biomarkers. An increasing amount of experimental evidence shows that ncRNAs are frequently dysregulated in diseases. Further, ncRNAs have been discovered in different extracellular forms, such as exosomes, which circulate in human body fluids. Thus, miRandola 2017 is an effort to update and collect the accumulating information on extracellular ncRNAs that is spread across scientific publications and different databases. Data are manually curated from 314 articles that describe miRNAs, long non-coding RNAs and circular RNAs. Fourteen organisms are now included in the database, and associations of ncRNAs with 25 drugs, 47 sample types and 197 diseases. miRandola also classifies extracellular RNAs based on their extracellular form: Argonaute2 protein, exosome, microvesicle, microparticle, membrane vesicle, high density lipoprotein and circulating. We also implemented a new web interface to improve the user experience.[2]

MicroRNAs (miRNAs) are small noncoding RNAs that play an important role in the regulation of various biological processes through their interaction with cellular mRNAs. A significant amount of miRNAs has been found in extracellular human body fluids (e.g. plasma and serum) and some circulating miRNAs in the blood have been successfully revealed as biomarkers for diseases including cardiovascular diseases and cancer. Released miRNAs do not necessarily reflect the abundance of miRNAs in the cell of origin. It is claimed that release of miRNAs from cells into blood and ductal fluids is selective and that the selection of released miRNAs may correlate with malignancy. Moreover, miRNAs play a significant role in pharmacogenomics by down-regulating genes that are important for drug function. In particular, the use of drugs should be taken into consideration while analyzing plasma miRNA levels as drug treatment. This may impair their employment as biomarkers.
We enriched our manually curated extracellular/circulating microRNAs database, miRandola, by providing (i) a systematic comparison of expression profiles of cellular and extracellular miRNAs, (ii) a miRNA targets enrichment analysis procedure, (iii) information on drugs and their effect on miRNA expression, obtained by applying a natural language processing algorithm to abstracts obtained from PubMed.
This allows users to improve the knowledge about the function, diagnostic potential, and the drug effects on cellular and circulating miRNAs.[3]


References