You are here

mirDIP

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Status:

Platform:

Implement Technique:

Pubmed IDs: 
Rating: 
Average: 5 (1 vote)

MicroRNAs are a class of small RNAs known to regulate gene expression at the transcript level, the protein level, or both. Since microRNA binding is sequence-based but possibly structure-specific, work in this area has resulted in multiple databases storing predicted microRNA:target relationships computed using diverse algorithms. We integrate prediction databases, compare predictions to in vitro data, and use cross-database predictions to model the microRNA:transcript interactome--referred to as the micronome--to study microRNA involvement in well-known signalling pathways as well as associations with disease. We make this data freely available with a flexible user interface as our microRNA Data Integration Portal--mirDIP (http://ophid.utoronto.ca/mirDIP).
mirDIP integrates prediction databases to elucidate accurate microRNA:target relationships. Using NAViGaTOR to produce interaction networks implicating microRNAs in literature-based, KEGG-based and Reactome-based pathways, we find these signalling pathway networks have significantly more microRNA involvement compared to chance (p<0.05), suggesting microRNAs co-target many genes in a given pathway. Further examination of the micronome shows two distinct classes of microRNAs; universe microRNAs, which are involved in many signalling pathways; and intra-pathway microRNAs, which target multiple genes within one signalling pathway. We find universe microRNAs to have more targets (p<0.0001), to be more studied (p<0.0002), and to have higher degree in the KEGG cancer pathway (p<0.0001), compared to intra-pathway microRNAs.
Our pathway-based analysis of mirDIP data suggests microRNAs are involved in intra-pathway signalling. We identify two distinct classes of microRNAs, suggesting a hierarchical organization of microRNAs co-targeting genes both within and between pathways, and implying differential involvement of universe and intra-pathway microRNAs at the disease level.[1]

MicroRNAs are important regulators of gene expression, achieved by binding to the gene to be regulated. Even with modern high-throughput technologies, it is laborious and expensive to detect all possible microRNA targets. For this reason, several computational microRNA-target prediction tools have been developed, each with its own strengths and limitations. Integration of different tools has been a successful approach to minimize the shortcomings of individual databases. Here, we present mirDIP v4.1, providing nearly 152 million human microRNA-target predictions, which were collected across 30 different resources. We also introduce an integrative score, which was statistically inferred from the obtained predictions, and was assigned to each unique microRNA-target interaction to provide a unified measure of confidence. We demonstrate that integrating predictions across multiple resources does not cumulate prediction bias toward biological processes or pathways. mirDIP v4.1 is freely available at http://ophid.utoronto.ca/mirDIP/.[2]


References