Status:
Platform:
Implement Technique:
Species:
Tumor suppressor genes (TSGs) are guardian genes that play important roles in controlling cell proliferation processes such as cell-cycle checkpoints and inducing apoptosis. Identification of these genes and understanding their functions are critical for further investigation of tumorigenesis. So far, many studies have identified numerous TSGs and illustrated their functions in various types of tumors or normal samples. Furthermore, accumulating evidence has shown that non-coding RNAs can act as TSGs to prevent the tumorigenesis processes. Therefore, there is a growing demand to integrate TSGs with large-scale experimental evidence (e.g. gene expression and epigenetic signatures) to provide a comprehensive resource for further investigation of TSGs and their molecular mechanisms in cancer. To achieve this goal, we first developed a comprehensive literature-based database called TSGene (tumor suppressor gene database), freely available at http://bioinfo.mc.vanderbilt.edu/TSGene/. In the current release, TSGene contains 716 human (637 protein-coding and 79 non-coding genes), 628 mouse and 567 rat TSGs curated from UniProtKB, the Tumor Associated Gene database and 5795 PubMed abstracts. Additionally, the TSGene provides detailed annotations for each TSG, such as cancer mutations, gene expressions, methylation sites, TF regulations and protein-protein interactions.[1]
Tumor suppressor genes (TSGs) are a major type of gatekeeper genes in the cell growth. A knowledgebase with the systematic collection and curation of TSGs in multiple cancer types is critically important for further studying their biological functions as well as for developing therapeutic strategies. Since its development in 2012, the Tumor Suppressor Gene database (TSGene), has become a popular resource in the cancer research community. Here, we reported the TSGene version 2.0, which has substantial updates of contents (e.g. up-to-date literature and pan-cancer genomic data collection and curation), data types (noncoding RNAs and protein-coding genes) and content accessibility. Specifically, the current TSGene 2.0 contains 1217 human TSGs (1018 protein-coding and 199 non-coding genes) curated from over 9000 articles. Additionally, TSGene 2.0 provides thousands of expression and mutation patterns derived from pan-cancer data of The Cancer Genome Atlas. A new web interface is available at http://bioinfo.mc.vanderbilt.edu/TSGene/. Systematic analyses of 199 non-coding TSGs provide numerous cancer-specific non-coding mutational events for further screening and clinical use. Intriguingly, we identified 49 protein-coding TSGs that were consistently down-regulated in 11 cancer types. In summary, TSGene 2.0, which is the only available database for TSGs, provides the most updated TSGs and their features in pan-cancer.[2]