You are here

miRNAMap

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Status:

Platform:

Implement Technique:

Pubmed IDs: 
Rating: 
Average: 5 (1 vote)

Recent work has demonstrated that microRNAs (miRNAs) are involved in critical biological processes by suppressing the translation of coding genes. This work develops an integrated database, miRNAMap, to store the known miRNA genes, the putative miRNA genes, the known miRNA targets and the putative miRNA targets. The known miRNA genes in four mammalian genomes such as human, mouse, rat and dog are obtained from miRBase, and experimentally validated miRNA targets are identified in a survey of the literature. Putative miRNA precursors were identified by RNAz, which is a non-coding RNA prediction tool based on comparative sequence analysis. The mature miRNA of the putative miRNA genes is accurately determined using a machine learning approach, mmiRNA. Then, miRanda was applied to predict the miRNA targets within the conserved regions in 3'-UTR of the genes in the four mammalian genomes. The miRNAMap also provides the expression profiles of the known miRNAs, cross-species comparisons, gene annotations and cross-links to other biological databases. Both textual and graphical web interface are provided to facilitate the retrieval of data from the miRNAMap. The database is freely available at http://mirnamap.mbc.nctu.edu.tw/.[1]

MicroRNAs (miRNAs) are small non-coding RNA molecules that can negatively regulate gene expression and thus control numerous cellular mechanisms. This work develops a resource, miRNAMap 2.0, for collecting experimentally verified microRNAs and experimentally verified miRNA target genes in human, mouse, rat and other metazoan genomes. Three computational tools, miRanda, RNAhybrid and TargetScan, were employed to identify miRNA targets in 3'-UTR of genes as well as the known miRNA targets. Various criteria for filtering the putative miRNA targets are applied to reduce the false positive prediction rate of miRNA target sites. Additionally, miRNA expression profiles can provide valuable clues on the characteristics of miRNAs, including tissue specificity and differential expression in cancer/normal cell. Therefore, quantitative polymerase chain reaction experiments were performed to monitor the expression profiles of 224 human miRNAs in 18 major normal tissues in human. The negative correlation between the miRNA expression profile and the expression profiles of its target genes typically helps to elucidate the regulatory functions of the miRNA. The interface is also redesigned and enhanced. The miRNAMap 2.0 is now available at http://miRNAMap.mbc.nctu.edu.tw/.[2]


References