Status:
Platform:
Species:
There are numerous examples of RNA-RNA complexes, including microRNA-mRNA and small RNA-mRNA duplexes for regulation of translation, guide RNA interactions with target RNA for post-transcriptional modification and small nuclear RNA duplexes for splicing. Predicting the base pairs formed between two interacting sequences remains difficult, at least in part because of the competition between unimolecular and bimolecular structure.
Two algorithms were developed for improved prediction of bimolecular RNA structure that consider the competition between self-structure and bimolecular structure. These algorithms utilize two novel approaches to evaluate accessibility: free energy density minimization and pseudo-energy minimization. Free energy density minimization minimizes the folding free energy change per nucleotide involved in an intermolecular secondary structure. Pseudo-energy minimization (called AccessFold) minimizes the sum of free energy change and a pseudo-free energy penalty for bimolecular pairing of nucleotides that are unlikely to be accessible for bimolecular structure. The pseudo-free energy, derived from unimolecular pairing probabilities, is applied per nucleotide in bimolecular pairs, and this approach is able to predict binding sites that are split by unimolecular structures. A benchmark set of 17 bimolecular RNA structures was assembled to assess structure prediction. Pseudo-energy minimization provides a statistically significant improvement in sensitivity over the method that was found in a benchmark to be the most accurate previously available method, with an improvement from 36.8% to 57.8% in mean sensitivity for base pair prediction.
Pseudo-energy minimization is available for download as AccessFold, under an open-source license and as part of the RNAstructure package, at: http://rna.urmc.rochester.edu/RNAstructure.html
david_mathews@urmc.rochester.edu
Supplementary data are available at Bioinformatics online.[1]
To understand an RNA sequence's mechanism of action, the structure must be known. Furthermore, target RNA structure is an important consideration in the design of small interfering RNAs and antisense DNA oligonucleotides. RNA secondary structure prediction, using thermodynamics, can be used to develop hypotheses about the structure of an RNA sequence.
RNAstructure is a software package for RNA secondary structure prediction and analysis. It uses thermodynamics and utilizes the most recent set of nearest neighbor parameters from the Turner group. It includes methods for secondary structure prediction (using several algorithms), prediction of base pair probabilities, bimolecular structure prediction, and prediction of a structure common to two sequences. This contribution describes new extensions to the package, including a library of C++ classes for incorporation into other programs, a user-friendly graphical user interface written in JAVA, and new Unix-style text interfaces. The original graphical user interface for Microsoft Windows is still maintained.
The extensions to RNAstructure serve to make RNA secondary structure prediction user-friendly. The package is available for download from the Mathews lab homepage at http://rna.urmc.rochester.edu/RNAstructure.html.[2]
RNAstructure is a software package for RNA secondary structure prediction and analysis. This contribution describes a new set of web servers to provide its functionality. The web server offers RNA secondary structure prediction, including free energy minimization, maximum expected accuracy structure prediction and pseudoknot prediction. Bimolecular secondary structure prediction is also provided. Additionally, the server can predict secondary structures conserved in either two homologs or more than two homologs. Folding free energy changes can be predicted for a given RNA structure using nearest neighbor rules. Secondary structures can be compared using circular plots or the scoring methods, sensitivity and positive predictive value. Additionally, structure drawings can be rendered as SVG, postscript, jpeg or pdf. The web server is freely available for public use at: http://rna.urmc.rochester.edu/RNAstructureWeb.[3]
References
- AccessFold: predicting RNA-RNA interactions with consideration for competing self-structure.,
, Bioinformatics, 2016 Apr 1, Volume 32, Issue 7, p.1033-9, (2016)
- RNAstructure: software for RNA secondary structure prediction and analysis.,
, BMC Bioinformatics, 2010, Volume 11, p.129, (2010)
- RNAstructure: Web servers for RNA secondary structure prediction and analysis.,
, Nucleic Acids Res, 2013 Jul, Volume 41, Issue Web Server issue, p.W471-4, (2013)