You are here

k-Means

k-means clustering is a method of vector quantization, originally from signal processing, that is popular for cluster analysis in data mining. k-means clustering aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean, serving as a prototype of the cluster. [Source: Wikipedia ]

HCS-Analyzer

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

High-throughput screening is a powerful technology principally used by pharmaceutical industries allowing the identification of molecules of interest within large libraries. Originally target based, cellular assays provide a way to test compounds (or other biological material such as small interfering RNA) in a more physiologically realistic in vitro environment. High-content screening (HCS) platforms are now available at lower cost, giving the opportunity for universities or research institutes to access those technologies for research purposes.

Rating: 
Average: 5 (1 vote)

MVDA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Multiple high-throughput molecular profiling by omics technologies can be collected for the same individuals. Combining these data, rather than exploiting them separately, can significantly increase the power of clinically relevant patients subclassifications.

Rating: 
Average: 5 (1 vote)

mESAdb

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

microRNA expression and sequence analysis database (http://konulab.fen.bilkent.edu.tr/mirna/) (mESAdb) is a regularly updated database for the multivariate analysis of sequences and expression of microRNAs from multiple taxa. mESAdb is modular and has a user interface implemented in PHP and JavaScript and coupled with statistical analysis and visualization packages written for the R language.

Rating: 
Average: 5 (1 vote)

MixDTrees

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The regulatory processes that govern cell proliferation and differentiation are central to developmental biology. Particularly well studied in this respect is the lymphoid system due to its importance for basic biology and for clinical applications. Gene expression measured in lymphoid cells in several distinguishable developmental stages helps in the elucidation of underlying molecular processes, which change gradually over time and lock cells in either the B cell, T cell or Natural Killer cell lineages.

Rating: 
Average: 5 (1 vote)

miRCluster

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Since the initial annotation of microRNAs (miRNAs) in 2001, many studies have sought to identify additional miRNAs experimentally or computationally in various species. MiRNAs act with the Argonaut family of proteins to regulate target messenger RNAs (mRNAs) post-transcriptionally. Currently, researches mainly focus on single miRNA function study.

Rating: 
Average: 5 (1 vote)

MiRComb

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are small RNAs that regulate the expression of target mRNAs by specific binding on the mRNA 3'UTR and promoting mRNA degradation in the majority of cases. It is often of interest to know the specific targets of a miRNA in order to study them in a particular disease context. In that sense, some databases have been designed to predict potential miRNA-mRNA interactions based on hybridization sequences. However, one of the main limitations is that these databases have too many false positives and do not take into account disease-specific interactions.

Rating: 
5
Average: 4.5 (2 votes)

OncomiR

Submitted by ChenLiang on Tue, 01/09/2018 - 17:26

Dysregulation of microRNAs (miRNAs) is extensively associated with cancer development and progression. miRNAs have been shown to be biomarkers for predicting tumor formation and outcome. However, identification of the relationships between miRNA expression and tumor characteristics can be difficult and time-consuming without appropriate bioinformatics expertise. To address this issue, we present OncomiR, an online resource for exploring miRNA dysregulation in cancer.

Rating: 
Average: 5 (1 vote)

iBFE

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

High-throughput biotechnologies have been widely used to characterize clinical samples from various perspectives e.g., epigenomics, genomics and transcriptomics. However, because of the heterogeneity of these technologies and their outputs, individual analysis of the various types of data is hard to create a comprehensive view of disease subtypes. Integrative methods are of pressing need.

Rating: 
5
Average: 5 (1 vote)

Loregic

Submitted by ChenLiang on Thu, 04/06/2017 - 18:45

The topology of the gene-regulatory network has been extensively analyzed. Now, given the large amount of available functional genomic data, it is possible to go beyond this and systematically study regulatory circuits in terms of logic elements. To this end, we present Loregic, a computational method integrating gene expression and regulatory network data, to characterize the cooperativity of regulatory factors. Loregic uses all 16 possible two-input-one-output logic gates (e.g. AND or XOR) to describe triplets of two factors regulating a common target.

Rating: 
Average: 5 (1 vote)
Subscribe to k-Means