You are here

Hierarchical Clustering

In data mining and statistics, hierarchical clustering (also called hierarchical cluster analysis or HCA) is a method of cluster analysis which seeks to build a hierarchy of clusters. [Source: Wikipedia ]

MVDA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Multiple high-throughput molecular profiling by omics technologies can be collected for the same individuals. Combining these data, rather than exploiting them separately, can significantly increase the power of clinically relevant patients subclassifications.

Rating: 
Average: 5 (1 vote)

recit

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Regulatory elements in mRNA play an often pivotal role in post-transcriptional regulation of gene expression. However, a systematic approach to efficiently identify putative regulatory elements from sets of post-transcriptionally coregulated genes is lacking, hampering studies of coregulation mechanisms. Although there are several analytical methods that can be used to detect conserved mRNA regulatory elements in a set of transcripts, there has been no systematic study of how well any of these methods perform individually or as a group.

Rating: 
Average: 5 (1 vote)

ProMISe

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Aberrant microRNA (miRNA) expression is implicated in tumorigenesis. The underlying mechanisms are unclear because the regulations of each miRNA on potentially hundreds of mRNAs are sample specific. We describe a novel approach to inferProbabilisticMiRNA-mRNA Interaction Signature ('ProMISe') from a single pair of miRNA-mRNA expression profile. Our model considers mRNA and miRNA competition as a probabilistic function of the expressed seeds (matches). To demonstrate ProMISe, we extensively exploited The Cancer Genome Atlasdata.

Rating: 
Average: 5 (1 vote)

ToppCluster

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

ToppCluster is a web server application that leverages a powerful enrichment analysis and underlying data environment for comparative analyses of multiple gene lists. It generates heatmaps or connectivity networks that reveal functional features shared or specific to multiple gene lists. ToppCluster uses hypergeometric tests to obtain list-specific feature enrichment P-values for currently 17 categories of annotations of human-ortholog genes, and provides user-selectable cutoffs and multiple testing correction methods to control false discovery.

Rating: 
Average: 5 (1 vote)

CKDdb

Submitted by ChenLiang on Thu, 04/06/2017 - 17:37

Complex human traits such as chronic kidney disease (CKD) are a major health and financial burden in modern societies. Currently, the description of the CKD onset and progression at the molecular level is still not fully understood. Meanwhile, the prolific use of high-throughput omic technologies in disease biomarker discovery studies yielded a vast amount of disjointed data that cannot be easily collated. Therefore, we aimed to develop a molecule-centric database featuring CKD-related experiments from available literature publications.

Rating: 
Average: 5 (1 vote)

OncomiR

Submitted by ChenLiang on Tue, 01/09/2018 - 17:26

Dysregulation of microRNAs (miRNAs) is extensively associated with cancer development and progression. miRNAs have been shown to be biomarkers for predicting tumor formation and outcome. However, identification of the relationships between miRNA expression and tumor characteristics can be difficult and time-consuming without appropriate bioinformatics expertise. To address this issue, we present OncomiR, an online resource for exploring miRNA dysregulation in cancer.

Rating: 
Average: 5 (1 vote)
Subscribe to Hierarchical Clustering