You are here

Hidden Markov Model (HMM)

A hidden Markov model (HMM) is a statistical Markov model in which the system being modeled is assumed to be a Markov process with unobserved (hidden) states. An HMM can be presented as the simplest dynamic Bayesian network. [Source: Wikipedia ]

ProMiR

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are small regulatory RNAs of approximately 22 nt. Although hundreds of miRNAs have been identified through experimental complementary DNA cloning methods and computational efforts, previous approaches could detect only abundantly expressed miRNAs or close homologs of previously identified miRNAs. Here, we introduce a probabilistic co-learning model for miRNA gene finding, ProMiR, which simultaneously considers the structure and sequence of miRNA precursors (pre-miRNAs).

Rating: 
Average: 5 (1 vote)

MicroMUMMIE

Submitted by ChenLiang on Sun, 09/10/2017 - 20:22

High-throughput sequencing has opened numerous possibilities for the identification of regulatory RNA-binding events. Cross-linking and immunoprecipitation of Argonaute proteins can pinpoint a microRNA (miRNA) target site within tens of bases but leaves the identity of the miRNA unresolved. A flexible computational framework, microMUMMIE, integrates sequence with cross-linking features and reliably identifies the miRNA family involved in each binding event.

Rating: 
Average: 5 (1 vote)

HHMMiR

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are small non-coding single-stranded RNAs (20-23 nts) that are known to act as post-transcriptional and translational regulators of gene expression. Although, they were initially overlooked, their role in many important biological processes, such as development, cell differentiation, and cancer has been established in recent times. In spite of their biological significance, the identification of miRNA genes in newly sequenced organisms is still based, to a large degree, on extensive use of evolutionary conservation, which is not always available.

Rating: 
Average: 5 (1 vote)

miRRim

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The identification of novel miRNAs has significant biological and clinical importance. However, none of the known miRNA features alone is sufficient for accurately detecting novel miRNAs. The aim of this paper is to integrate these features in a straightforward manner for detecting miRNAs with better accuracy.

Rating: 
Average: 5 (1 vote)

SSCprofiler

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The majority of existing computational tools rely on sequence homology and/or structural similarity to identify novel microRNA (miRNA) genes. Recently supervised algorithms are utilized to address this problem, taking into account sequence, structure and comparative genomics information. In most of these studies miRNA gene predictions are rarely supported by experimental evidence and prediction accuracy remains uncertain.

Rating: 
Average: 5 (1 vote)

A combinatorial approach to determine the context-dependent role in transcriptional and posttranscriptional regulation in Arabidopsis thaliana

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

While progresses have been made in mapping transcriptional regulatory networks, posttranscriptional regulatory roles just begin to be uncovered, which has arrested much attention due to the discovery of miRNAs. Here we demonstrated a combinatorial approach to incorporate transcriptional and posttranscriptional regulatory sequences with gene expression profiles to determine their probabilistic dependencies.

Rating: 
Average: 5 (1 vote)

miRvestigator

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Transcriptome profiling studies have produced staggering numbers of gene co-expression signatures for a variety of biological systems. A significant fraction of these signatures will be partially or fully explained by miRNA-mediated targeted transcript degradation. miRvestigator takes as input lists of co-expressed genes from Caenorhabditis elegans, Drosophila melanogaster, G. gallus, Homo sapiens, Mus musculus or Rattus norvegicus and identifies the specific miRNAs that are likely to bind to 3' un-translated region (UTR) sequences to mediate the observed co-regulation.

Rating: 
Average: 5 (1 vote)

rnaanalys

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are small single-stranded noncoding RNAs that play an important role in post-transcriptional regulation of gene expression. In this paper, we present a web server for ab initio prediction of the human miRNAs and their precursors. The prediction methods are based on the hidden Markov Models and the context-structural characteristics. By taking into account the identified patterns of primary and secondary structures of the pre-miRNAs, a new HMM model is proposed and the existing context-structural Markov model is modified.

Rating: 
Average: 5 (1 vote)

CCmiR

Submitted by ChenLiang on Tue, 01/09/2018 - 17:39

The identification of microRNA (miRNA) target sites is important. In the past decade, dozens of computational methods have been developed to predict miRNA target sites. Despite their existence, rarely does a method consider the well-known competition and cooperation among miRNAs when attempts to discover target sites. To fill this gap, we developed a new approach called CCmiR, which takes the cooperation and competition of multiple miRNAs into account in a statistical model to predict their target sites.

Rating: 
Average: 5 (1 vote)
Subscribe to Hidden Markov Model (HMM)