You are here

Expectation Maximisation (EM)

In statistics, an expectation–maximization (EM) algorithm is an iterative method for finding maximum likelihood or maximum a posteriori (MAP) estimates of parameters in statistical models, where the model depends on unobserved latent variables. [Source: Wikipedia ]

ElMMo

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs have emerged as important regulatory genes in a variety of cellular processes and, in recent years, hundreds of such genes have been discovered in animals. In contrast, functional annotations are available only for a very small fraction of these miRNAs, and even in these cases only partially.

Rating: 
Average: 5 (1 vote)

CMfinder

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The recent discoveries of large numbers of non-coding RNAs and computational advances in genome-scale RNA search create a need for tools for automatic, high quality identification and characterization of conserved RNA motifs that can be readily used for database search. Previous tools fall short of this goal.

Rating: 
Average: 5 (1 vote)

expmicro

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are single-stranded non-coding RNAs shown to plays important regulatory roles in a wide range of biological processes and diseases. The functions and regulatory mechanisms of most of miRNAs are still poorly understood in part because of the difficulty in identifying the miRNA regulatory targets. To this end, computational methods have evolved as important tools for genome-wide target screening.

Rating: 
Average: 5 (1 vote)

iSubgraph

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The high tumor heterogeneity makes it very challenging to identify key tumorigenic pathways as therapeutic targets. The integration of multiple omics data is a promising approach to identify driving regulatory networks in patient subgroups. Here, we propose a novel conceptual framework to discover patterns of miRNA-gene networks, observed frequently up- or down-regulated in a group of patients and to use such networks for patient stratification in hepatocellular carcinoma (HCC).

Rating: 
Average: 5 (1 vote)

GenoSkyline

Submitted by ChenLiang on Fri, 10/21/2016 - 16:22

Extensive efforts have been made to understand genomic function through both experimental and computational approaches, yet proper annotation still remains challenging, especially in non-coding regions. In this manuscript, we introduce GenoSkyline, an unsupervised learning framework to predict tissue-specific functional regions through integrating high-throughput epigenetic annotations. GenoSkyline successfully identified a variety of non-coding regulatory machinery including enhancers, regulatory miRNA, and hypomethylated transposable elements in extensive case studies.

Rating: 
Average: 5 (1 vote)
Subscribe to Expectation Maximisation (EM)