You are here

C4.5

C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. C4.5 is an extension of Quinlan's earlier ID3 algorithm. The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier. [Source: Wikipedia ]

HCS-Analyzer

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

High-throughput screening is a powerful technology principally used by pharmaceutical industries allowing the identification of molecules of interest within large libraries. Originally target based, cellular assays provide a way to test compounds (or other biological material such as small interfering RNA) in a more physiologically realistic in vitro environment. High-content screening (HCS) platforms are now available at lower cost, giving the opportunity for universities or research institutes to access those technologies for research purposes.

Rating: 
Average: 5 (1 vote)

CID-miRNA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

microRNAs (miRNA) are a class of non-protein coding functional RNAs that are thought to regulate expression of target genes by direct interaction with mRNAs. miRNAs have been identified through both experimental and computational methods in a variety of eukaryotic organisms. Though these approaches have been partially successful, there is a need to develop more tools for detection of these RNAs as they are also thought to be present in abundance in many genomes.

Rating: 
Average: 5 (1 vote)

Automatic learning of pre-miRNAs from different species

Submitted by ChenLiang on Thu, 04/06/2017 - 17:26

Discovery of microRNAs (miRNAs) relies on predictive models for characteristic features from miRNA precursors (pre-miRNAs). The short length of miRNA genes and the lack of pronounced sequence features complicate this task. To accommodate the peculiarities of plant and animal miRNAs systems, tools for both systems have evolved differently. However, these tools are biased towards the species for which they were primarily developed and, consequently, their predictive performance on data sets from other species of the same kingdom might be lower.

Rating: 
Average: 5 (1 vote)

miRNA-ensemble

Submitted by ChenLiang on Mon, 01/09/2017 - 10:36

Cancer classification has been a crucial topic of research in cancer treatment. In the last decade, messenger RNA (mRNA) expression profiles have been widely used to classify different types of cancers. With the discovery of a new class of small non-coding RNAs; known as microRNAs (miRNAs), various studies have shown that the expression patterns of miRNA can also accurately classify human cancers. Therefore, there is a great demand for the development of machine learning approaches to accurately classify various types of cancers using miRNA expression data.

Rating: 
Average: 5 (1 vote)
Subscribe to C4.5