You are here

Bioconductor

Bioconductor is a free, open source and open development software project for the analysis and comprehension of genomic data generated by wet lab experiments in molecular biology. [Source: Wikipedia ]

MmPalateMiRNA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) constitute the largest family of noncoding RNAs involved in gene silencing and represent critical regulators of cell and tissue differentiation. Microarray expression profiling of miRNAs is an effective means of acquiring genome-level information of miRNA activation and inhibition, as well as the potential regulatory role that these genes play within a biological system.

Rating: 
Average: 5 (1 vote)

miRcomp

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Several techniques have been tailored to the quantification of microRNA expression, including hybridization arrays, quantitative PCR (qPCR), and high-throughput sequencing. Each of these has certain strengths and limitations depending both on the technology itself and the algorithm used to convert raw data into expression estimates. Reliable quantification of microRNA expression is challenging in part due to the relatively low abundance and short length of the miRNAs.

Rating: 
Average: 5 (1 vote)

ExiMiR

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

High-quality expression data are required to investigate the biological effects of microRNAs (miRNAs). The goal of this study was, first, to assess the quality of miRNA expression data based on microarray technologies and, second, to consolidate it by applying a novel normalization method. Indeed, because of significant differences in platform designs, miRNA raw data cannot be normalized blindly with standard methods developed for gene expression.

Rating: 
Average: 5 (1 vote)

biRte

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

In the last years there has been an increasing effort to computationally model and predict the influence of regulators (transcription factors, miRNAs) on gene expression. Here we introduce biRte as a computationally attractive approach combining Bayesian inference of regulator activities with network reverse engineering. biRte integrates target gene predictions with different omics data entities (e.g. miRNA and mRNA data) into a joint probabilistic framework.

Rating: 
Average: 5 (1 vote)

miRNAmeConverter

Submitted by ChenLiang on Mon, 01/09/2017 - 10:23

The miRBase database is the central and official repository for miRNAs and the current release is miRBase version 21.0. Name changes in different miRBase releases cause inconsistencies in miRNA names from version to version. When working with only a small number of miRNAs the translation can be done manually. However, with large sets of miRNAs, the necessary correction of such inconsistencies becomes burdensome and error-prone.

Rating: 
Average: 5 (1 vote)

MLSeq

Submitted by ChenLiang on Sun, 09/10/2017 - 17:14

RNA sequencing (RNA-Seq) is a powerful technique for the gene-expression profiling of organisms that uses the capabilities of next-generation sequencing technologies. Developing gene-expression-based classification algorithms is an emerging powerful method for diagnosis, disease classification and monitoring at molecular level, as well as providing potential markers of diseases. Most of the statistical methods proposed for the classification of gene-expression data are either based on a continuous scale (eg. microarray data) or require a normal distribution assumption.

Rating: 
Average: 4 (1 vote)

Director

Submitted by ChenLiang on Tue, 01/09/2018 - 17:47

High-throughput measurement technologies have triggered a rise in large-scale cancer studies containing multiple levels of molecular data. While there are a number of efficient methods to analyze individual data types, there are far less that enhance data interpretation after analysis. We present the R package Director, a dynamic visualization approach to linking and interrogating multiple levels of molecular data after analysis for clinically meaningful, actionable insights.

Rating: 
5
Average: 4.5 (2 votes)

birta

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

There have been many successful experimental and bioinformatics efforts to elucidate transcription factor (TF)-target networks in several organisms. For many organisms, these annotations are complemented by miRNA-target networks of good quality. Attempts that use these networks in combination with gene expression data to draw conclusions on TF or miRNA activity are, however, still relatively sparse.

Rating: 
Average: 5 (1 vote)

SIM

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

It has been shown that a random-effects framework can be used to test the association between a gene's expression level and the number of DNA copies of a set of genes. This gene-set modelling framework was later applied to find associations between mRNA expression and microRNA expression, by defining the gene sets using target prediction information.

Rating: 
Average: 5 (1 vote)

CHRONOS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

In the era of network medicine and the rapid growth of paired time series mRNA/microRNA expression experiments, there is an urgent need for pathway enrichment analysis methods able to capture the time- and condition-specific 'active parts' of the biological circuitry as well as the microRNA impact. Current methods ignore the multiple dynamical 'themes'-in the form of enriched biologically relevant microRNA-mediated subpathways-that determine the functionality of signaling networks across time.

Rating: 
5
Average: 4.5 (2 votes)

Pages

Subscribe to Bioconductor