You are here

Dead

BraMRs

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are one of the functional non-coding small RNAs involved in the epigenetic control of the plant genome. Although plants contain both evolutionary conserved miRNAs and species-specific miRNAs within their genomes, computational methods often only identify evolutionary conserved miRNAs. The recent sequencing of the Brassica rapa genome enables us to identify miRNAs and their putative target genes. In this study, we sought to provide a more comprehensive prediction of B. rapa miRNAs based on high throughput small RNA deep sequencing.

Rating: 
Average: 5 (1 vote)

recit

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Regulatory elements in mRNA play an often pivotal role in post-transcriptional regulation of gene expression. However, a systematic approach to efficiently identify putative regulatory elements from sets of post-transcriptionally coregulated genes is lacking, hampering studies of coregulation mechanisms. Although there are several analytical methods that can be used to detect conserved mRNA regulatory elements in a set of transcripts, there has been no systematic study of how well any of these methods perform individually or as a group.

Rating: 
Average: 5 (1 vote)

mirExplorer

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

microRNAs (miRNAs) represent an abundant group of small regulatory non-coding RNAs in eukaryotes. The emergence of Next-generation sequencing (NGS) technologies has allowed the systematic detection of small RNAs (sRNAs) and de novo sequencing of genomes quickly and with low cost. As a result, there is an increased need to develop fast miRNA prediction tools to annotate miRNAs from various organisms with a high level of accuracy, using the genome sequence or the NGS data. Several miRNA predictors have been proposed to achieve this purpose.

Rating: 
Average: 5 (1 vote)

mirna_target

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Despite experiments showing that the number of microRNA (miRNA) target sites is critical for miRNA targeting, most existing methods focus on identifying individual miRNA target sites and do not model contributions of multiple target sites to miRNA regulation. To address this possible fault, we developed a miRNA target prediction model that recognizes the individual characteristics of functional binding sites and the global characteristics of miRNA-targeted mRNAs.

Rating: 
5
Average: 4.5 (2 votes)

miRD

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

High-throughput deep-sequencing technology has generated an unprecedented number of expressed short sequence reads, presenting not only an opportunity but also a challenge for prediction of novel microRNAs. To verify the existence of candidate microRNAs, we have to show that these short sequences can be processed from candidate pre-microRNAs. However, it is laborious and time consuming to verify these using existing experimental techniques.

Rating: 
Average: 5 (1 vote)

ifmda

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Since the discovery of the regulatory function of microRNA (miRNA), increased attention has focused on identifying the relationship between miRNA and disease. It has been suggested that computational method are an efficient way to identify potential disease-related miRNAs for further confirmation using biological experiments. In this paper, we first highlighted three limitations commonly associated with previous computational methods.

Rating: 
5
Average: 4.3 (3 votes)

HomoTarget

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MiRNAs play an essential role in the networks of gene regulation by inhibiting the translation of target mRNAs. Several computational approaches have been proposed for the prediction of miRNA target-genes. Reports reveal a large fraction of under-predicted or falsely predicted target genes. Thus, there is an imperative need to develop a computational method by which the target mRNAs of existing miRNAs can be correctly identified.

Rating: 
Average: 5 (1 vote)

SolmiRNA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are a class of small, single-stranded, noncoding RNAs ranging from 19 to 25 nucleotides. The miRNA control various cellular functions by negatively regulating gene expression at the post-transcriptional level. The miRNA regulation over their target genes has a central role in regulating plant growth and development; however, only a few reports have been published on the function of miRNAs in the family Solanaceae.

Rating: 
Average: 5 (1 vote)

MirID

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs play important roles in most biological processes, including cell proliferation, tissue differentiation, and embryonic development, among others. They originate from precursor transcripts (pre-miRNAs), which contain phylogenetically conserved stem-loop structures. An important bioinformatics problem is to distinguish the pre-miRNAs from pseudo pre-miRNAs that have similar stem-loop structures. We present here a novel method for tackling this bioinformatics problem.

Rating: 
Average: 5 (1 vote)

miRTCat

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) regulate various biological functions by binding hundreds of transcripts to impart post-transcriptional repression. Recently, by applying a transcriptome-wide experimental method for identifying miRNA target sites (Ago HITS-CLIP), a novel non-canonical target site, named 'nucleation bulge', was discovered as widespread, functional and evolutionally conserved. Although such non-canonical nucleation bulges have been proven to be predictive by using 'pivot pairing rule' and sequence conservation, this approach has not been applied yet.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Dead