You are here

Information Gain

MaturePred

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are a set of short (19~24 nt) non-coding RNAs that play significant roles as posttranscriptional regulators in animals and plants. The ab initio prediction methods show excellent performance for discovering new pre-miRNAs. While most of these methods can distinguish real pre-miRNAs from pseudo pre-miRNAs, few can predict the positions of miRNAs. Among the existing methods that can also predict the miRNA positions, most of them are designed for mammalian miRNAs, including human and mouse. Minority of methods can predict the positions of plant miRNAs.

Rating: 
Average: 5 (1 vote)

PlantMiRNAPred

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are a set of short (21-24 nt) non-coding RNAs that play significant roles as post-transcriptional regulators in animals and plants. While some existing methods use comparative genomic approaches to identify plant precursor miRNAs (pre-miRNAs), others are based on the complementarity characteristics between miRNAs and their target mRNAs sequences. However, they can only identify the homologous miRNAs or the limited complementary miRNAs.

Rating: 
Average: 5 (1 vote)

miRLiN

Submitted by ChenLiang on Mon, 01/09/2017 - 10:21

BACKGROUND: The amount of scientific information about MicroRNAs (miRNAs) is growing exponentially, making it difficult for researchers to interpret experimental results. In this study, we present an automated text mining approach using Latent Semantic Indexing (LSI) for prioritization, clustering and functional annotation of miRNAs. RESULTS: For approximately 900 human miRNAs indexed in miRBase, text documents were created by concatenating titles and abstracts of MEDLINE citations which refer to the miRNAs.

Rating: 
Average: 5 (1 vote)

miRNA-ensemble

Submitted by ChenLiang on Mon, 01/09/2017 - 10:36

Cancer classification has been a crucial topic of research in cancer treatment. In the last decade, messenger RNA (mRNA) expression profiles have been widely used to classify different types of cancers. With the discovery of a new class of small non-coding RNAs; known as microRNAs (miRNAs), various studies have shown that the expression patterns of miRNA can also accurately classify human cancers. Therefore, there is a great demand for the development of machine learning approaches to accurately classify various types of cancers using miRNA expression data.

Rating: 
Average: 5 (1 vote)
Subscribe to Information Gain