You are here

Minimal Redundancy Maximal Relevance (MRMR)

Minimum redundancy feature selection is an algorithm frequently used in a method to accurately identify characteristics of genes and phenotypes and narrow down their relevance and is usually described in its pairing with relevant feature selection as Minimum Redundancy Maximum Relevance (mRMR).[Source: Wikipedia ]

SVMicrO

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are single-stranded non-coding RNAs known to regulate a wide range of cellular processes by silencing the gene expression at the protein and/or mRNA levels. Computational prediction of miRNA targets is essential for elucidating the detailed functions of miRNA. However, the prediction specificity and sensitivity of the existing algorithms are still poor to generate meaningful, workable hypotheses for subsequent experimental testing.

Rating: 
Average: 5 (1 vote)

miRTP

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

We used a machine learning method, the nearest neighbor algorithm (NNA), to learn the relationship between miRNAs and their target proteins, generating a predictor which can then judge whether a new miRNA-target pair is true or not. We acquired 198 positive (true) miRNA-target pairs from Tarbase and the literature, and generated 4,888 negative (false) pairs through random combination. A 0/1 system and the frequencies of single nucleotides and di-nucleotides were used to encode miRNAs into vectors while various physicochemical parameters were used to encode the targets.

Rating: 
Average: 5 (1 vote)
Subscribe to Minimal Redundancy Maximal Relevance (MRMR)