miRMaster
Abstract is not available.[1]
MicroRNAs (miRNAs) are key regulators of cell-fate decisions in development and disease with a vast array of target interactions that can be investigated using computational approaches. For this study, we developed metaMIR, a combinatorial approach to identify miRNAs that co-regulate identified subsets of genes from a user-supplied list. We based metaMIR predictions on an improved dataset of human miRNA-target interactions, compiled using a machine-learning-based meta-analysis of established algorithms.
MicroRNAs (miRNAs) are small RNAs that regulate the expression of target mRNAs by specific binding on the mRNA 3'UTR and promoting mRNA degradation in the majority of cases. It is often of interest to know the specific targets of a miRNA in order to study them in a particular disease context. In that sense, some databases have been designed to predict potential miRNA-mRNA interactions based on hybridization sequences. However, one of the main limitations is that these databases have too many false positives and do not take into account disease-specific interactions.
A-to-I RNA editing is an important mechanism that consists of the conversion of specific adenosines into inosines in RNA molecules. Its dysregulation has been associated to several human diseases including cancer. Recent work has demonstrated a role for A-to-I editing in microRNA (miRNA)-mediated gene expression regulation. In fact, edited forms of mature miRNAs can target sets of genes that differ from the targets of their unedited forms. The specific deamination of mRNAs can generate novel binding sites in addition to potentially altering existing ones.
The OligoFaktory is a set of tools for the design, on an arbitrary number of target sequences, of high-quality long oligonucleotide for micro-array, of primer pair for PCR, of siRNA and more. The user-centered interface exists in two flavours: a web portal and a standalone software for Mac OS X Tiger. A unified presentation of results provides overviews with distribution charts and relative location bar graphs, as well as detailed features for each oligonucleotide.
MicroRNA (miRNA) family is a group of miRNAs that derive from the common ancestor. Normally, members from the same miRNA family have similar physiological functions; however, they are not always conserved in primary sequence or secondary structure. Proper family prediction from primary sequence will be helpful for accurate identification and further functional annotation of novel miRNA.
Accurate prediction of sRNA targets plays a key role in determining sRNA functions. Here we introduced two mathematical models, sRNATargetNB and sRNATargetSVM, for prediction of sRNA targets using Nai ve Bayes method and support vector machines (SVM), respectively. The training dataset was composed of 46 positive samples (real sRNA-targets interaction) and 86 negative samples (no interaction between sRNA and targets). The leave-one-out cross-validation (LOOCV) classification accuracy was 91.67% for sRNATargetNB, and 100.00% for sRNATargetSVM.
We present miRSeqNovel, an R based workflow for miRNA sequencing data analysis. miRSeqNovel can process both colorspace (SOLiD) and basespace (Illumina/Solexa) data by different mapping algorithms. It finds differentially expressed miRNAs and gives conservative prediction of novel miRNA candidates with customized parameters. miRSeqNovel is freely available at http://sourceforge.net/projects/mirseq/files.[1]
MicroRNAs (miRNAs) are small non-coding RNAs, which play a significant role in gene regulation. Predicting miRNA genes is a challenging bioinformatics problem and existing experimental and computational methods fail to deal with it effectively. We developed YamiPred, an embedded classification method that combines the efficiency and robustness of support vector machines (SVM) with genetic algorithms (GA) for feature selection and parameters optimization.
miRNAfe is a comprehensive tool to extract features from RNA sequences. It is freely available as a web service, allowing a single access point to almost all state-of-the-art feature extraction methods used today in a variety of works from different authors. It has a very simple user interface, where the user only needs to load a file containing the input sequences and select the features to extract. As a result, the user obtains a text file with the features extracted, which can be used to analyze the sequences or as input to a miRNA prediction software.