You are here

Active

miRMaster

Submitted by ChenLiang on Tue, 01/09/2018 - 17:27

Abstract is not available.[1]

Rating: 
Average: 5 (1 vote)

metaMIR

Submitted by ChenLiang on Tue, 01/09/2018 - 16:53

MicroRNAs (miRNAs) are key regulators of cell-fate decisions in development and disease with a vast array of target interactions that can be investigated using computational approaches. For this study, we developed metaMIR, a combinatorial approach to identify miRNAs that co-regulate identified subsets of genes from a user-supplied list. We based metaMIR predictions on an improved dataset of human miRNA-target interactions, compiled using a machine-learning-based meta-analysis of established algorithms.

Rating: 
Average: 5 (1 vote)

MiRComb

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are small RNAs that regulate the expression of target mRNAs by specific binding on the mRNA 3'UTR and promoting mRNA degradation in the majority of cases. It is often of interest to know the specific targets of a miRNA in order to study them in a particular disease context. In that sense, some databases have been designed to predict potential miRNA-mRNA interactions based on hybridization sequences. However, one of the main limitations is that these databases have too many false positives and do not take into account disease-specific interactions.

Rating: 
5
Average: 4.5 (2 votes)

miR-EdiTar

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

A-to-I RNA editing is an important mechanism that consists of the conversion of specific adenosines into inosines in RNA molecules. Its dysregulation has been associated to several human diseases including cancer. Recent work has demonstrated a role for A-to-I editing in microRNA (miRNA)-mediated gene expression regulation. In fact, edited forms of mature miRNAs can target sets of genes that differ from the targets of their unedited forms. The specific deamination of mRNAs can generate novel binding sites in addition to potentially altering existing ones.

Rating: 
Average: 5 (1 vote)

iBeetle-Base

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The iBeetle-Base (http://ibeetle-base.uni-goettingen.de) makes available annotations of RNAi phenotypes, which were gathered in a large scale RNAi screen in the red flour beetle Tribolium castaneum (iBeetle screen). In addition, it provides access to sequence information and links for all Tribolium castaneum genes.

Rating: 
Average: 5 (1 vote)

NRSE

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The recent discovery of the first small modulatory RNA (smRNA) presents the challenge of finding other molecules of similar length and conservation level. Unlike short interfering RNA (siRNA) and micro-RNA (miRNA), effective computational and experimental screening methods are not currently known for this species of RNA molecule, and the discovery of the one known example was partly fortuitous because it happened to be complementary to a well-studied DNA binding motif (the Neuron Restrictive Silencer Element).

Rating: 
Average: 5 (1 vote)

microDoR

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

There are two main mechanisms of miRNA-mediated gene silencing: either mRNA degradation or translational repression. However, the precise mechanism of target mRNAs regulated by miRNA remains unclear. As a complementary approach to experiment, a computational method was proposed to recognize the mechanism of miRNA-mediated gene silencing in human. We have analyzed extensive features correlated with miRNA-mediated silencing mechanism of mRNA.

Rating: 
Average: 5 (1 vote)

DINGO

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Cancer progression and development are initiated by aberrations in various molecular networks through coordinated changes across multiple genes and pathways. It is important to understand how these networks change under different stress conditions and/or patient-specific groups to infer differential patterns of activation and inhibition. Existing methods are limited to correlation networks that are independently estimated from separate group-specific data and without due consideration of relationships that are conserved across multiple groups.

Rating: 
4
Average: 4 (4 votes)

TF--miRNA

Submitted by ChenLiang on Fri, 10/21/2016 - 16:27

MOTIVATION: Reconstructing regulatory networks from expression and interaction data is a major goal of systems biology. While much work has focused on trying to experimentally and computationally determine the set of transcription-factors (TFs) and microRNAs (miRNAs) that regulate genes in these networks, relatively little work has focused on inferring the regulation of miRNAs by TFs. Such regulation can play an important role in several biological processes including development and disease.

Rating: 
Average: 5 (1 vote)

PlaMoM

Submitted by ChenLiang on Mon, 01/09/2017 - 11:29

In plants, various phloem-mobile macromolecules including noncoding RNAs, mRNAs and proteins are suggested to act as important long-distance signals in regulating crucial physiological and morphological transition processes such as flowering, plant growth and stress responses. Given recent advances in high-throughput sequencing technologies, numerous mobile macromolecules have been identified in diverse plant species from different plant families.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Active