miRNA Body Map
With few exceptions, current methods for short read mapping make use of simple seed heuristics to speed up the search. Most of the underlying matching models neglect the necessity to allow not only mismatches, but also insertions and deletions. Current evaluations indicate, however, that very different error models apply to the novel high-throughput sequencing methods. While the most frequent error-type in Illumina reads are mismatches, reads produced by 454's GS FLX predominantly contain insertions and deletions (indels).
To facilitate the designing process for vector-based siRNA and siRNA cassette, a tool set has been developed consisting of a siRNA target finder, a siRNA construct builder and a siRNA sequence scrambler. The siRNA target finder is used to identify candidate siRNA target sites. The program automates homology filtering, minimizes non-specific cross-reaction, filters target sites based on RNA duplex internal stability and siRNA sense/anti-sense strand secondary structure.
With the increasing use of post-genomics techniques to examine a wide variety of biological systems in laboratories throughout the world, scientists are often presented with lists of genes that they must make sense of. A consistently challenging problem is that of defining co-regulated genes within those gene lists. In recent years, microRNAs have emerged as a mechanism for regulating several cellular processes.
MicroRNAs (miRNAs) are a class of non-coding RNA that plays an important role in posttranscriptional regulation of mRNA. Evidence has shown that miRNA gene variability might interfere with its function resulting in phenotypic variation and disease susceptibility. A major role in miRNA target recognition is ascribed to complementarity with the miRNA seed region that can be affected by polymorphisms.
It is well known that microRNAs (miRNAs) and genes work cooperatively to form the key part of gene regulatory networks. However, the specific functional roles of most miRNAs and their combinatorial effects in cellular processes are still unclear. The availability of multiple types of functional genomic data provides unprecedented opportunities to study the miRNA-gene regulation. A major challenge is how to integrate the diverse genomic data to identify the regulatory modules of miRNAs and genes.
miRDeep and its varieties are widely used to quantify known and novel micro RNA (miRNA) from small RNA sequencing (RNAseq). This article describes miRDeep*, our integrated miRNA identification tool, which is modeled off miRDeep, but the precision of detecting novel miRNAs is improved by introducing new strategies to identify precursor miRNAs. miRDeep* has a user-friendly graphic interface and accepts raw data in FastQ and Sequence Alignment Map (SAM) or the binary equivalent (BAM) format.
Plant microRNAs (miRNAs) affect only a small number of targets with high sequence complementarity, while animal miRNAs usually have hundreds of targets with limited complementarity. We used artificial miRNAs (amiRNAs) to determine whether the narrow action spectrum of natural plant miRNAs reflects only intrinsic properties of the plant miRNA machinery or whether it is also due to past selection against natural miRNAs with broader specificity. amiRNAs were designed to target individual genes or groups of endogenous genes.
MicroRNAs (miRNAs) are small non-coding RNAs that regulate target gene expression and hence play important roles in metabolic pathways. Recent studies have evidenced the interrelation of miRNAs with cell proliferation, differentiation, development, and diseases. Since they are involved in gene regulation, they are intrinsically related to metabolic pathways. This leads to questions that are particularly interesting for investigating medical and laboratorial applications.
Many studies have investigated the differential expression of microRNAs (miRNAs) in disease states and between different treatments, tissues and developmental stages. Given a list of perturbed miRNAs, it is common to predict the shared pathways on which they act. The standard test for functional enrichment typically yields dozens of significantly enriched functional categories, many of which appear frequently in the analysis of apparently unrelated diseases and conditions.