You are here

Classification

ncRNAclassifier

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Inverted repeat genes encode precursor RNAs characterized by hairpin structures. These RNA hairpins are then metabolized by biosynthetic pathways to produce functional small RNAs. In eukaryotic genomes, short non-autonomous transposable elements can have similar size and hairpin structures as non-coding precursor RNAs. This resemblance leads to problems annotating small RNAs.

Rating: 
Average: 5 (1 vote)

miRBoost

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Identification of microRNAs (miRNAs) is an important step toward understanding post-transcriptional gene regulation and miRNA-related pathology. Difficulties in identifying miRNAs through experimental techniques combined with the huge amount of data from new sequencing technologies have made in silico discrimination of bona fide miRNA precursors from non-miRNA hairpin-like structures an important topic in bioinformatics. Among various techniques developed for this classification problem, machine learning approaches have proved to be the most promising.

Rating: 
Average: 5 (1 vote)

MirID

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs play important roles in most biological processes, including cell proliferation, tissue differentiation, and embryonic development, among others. They originate from precursor transcripts (pre-miRNAs), which contain phylogenetically conserved stem-loop structures. An important bioinformatics problem is to distinguish the pre-miRNAs from pseudo pre-miRNAs that have similar stem-loop structures. We present here a novel method for tackling this bioinformatics problem.

Rating: 
Average: 5 (1 vote)

nRC

Submitted by ChenLiang on Tue, 01/09/2018 - 17:25

Non-coding RNA (ncRNA) are small non-coding sequences involved in gene expression regulation of many biological processes and diseases. The recent discovery of a large set of different ncRNAs with biologically relevant roles has opened the way to develop methods able to discriminate between the different ncRNA classes.

Rating: 
Average: 5 (1 vote)

PHANTOM

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Traditional forward genetic screens are limited in the identification of homologous genes with overlapping functions. Here, we report the analyses and assembly of genome-wide protein family definitions that comprise the largest estimate for the potentially redundant gene space in Arabidopsis thaliana. On this basis, a computational design of genome-wide family-specific artificial microRNAs (amiRNAs) was performed using high-performance computing resources. The amiRNA designs are searchable online (http://phantomdb.ucsd.edu).

Rating: 
Average: 5 (1 vote)

RCDB

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Renal cell carcinoma or RCC is one of the common and most lethal urological cancers, with 40% of the patients succumbing to death because of metastatic progression of the disease. Treatment of metastatic RCC remains highly challenging because of its resistance to chemotherapy as well as radiotherapy, besides surgical resection. Whereas RCC comprises tumors with differing histological types, clear cell RCC remains the most common.

Rating: 
Average: 5 (1 vote)

WSNF

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Identifying cancer subtypes is an important component of the personalised medicine framework. An increasing number of computational methods have been developed to identify cancer subtypes. However, existing methods rarely use information from gene regulatory networks to facilitate the subtype identification. It is widely accepted that gene regulatory networks play crucial roles in understanding the mechanisms of diseases. Different cancer subtypes are likely caused by different regulatory mechanisms.

Rating: 
Average: 5 (1 vote)

miXGENE

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Contemporary molecular biology deals with wide and heterogeneous sets of measurements to model and understand underlying biological processes including complex diseases. Machine learning provides a frequent approach to build such models. However, the models built solely from measured data often suffer from overfitting, as the sample size is typically much smaller than the number of measured features. In this paper, we propose a random forest-based classifier that reduces this overfitting with the aid of prior knowledge in the form of a feature interaction network.

Rating: 
Average: 5 (1 vote)

miRClassify

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNA (miRNA) family is a group of miRNAs that derive from the common ancestor. Normally, members from the same miRNA family have similar physiological functions; however, they are not always conserved in primary sequence or secondary structure. Proper family prediction from primary sequence will be helpful for accurate identification and further functional annotation of novel miRNA.

Rating: 
Average: 5 (1 vote)

MLSeq

Submitted by ChenLiang on Sun, 09/10/2017 - 17:14

RNA sequencing (RNA-Seq) is a powerful technique for the gene-expression profiling of organisms that uses the capabilities of next-generation sequencing technologies. Developing gene-expression-based classification algorithms is an emerging powerful method for diagnosis, disease classification and monitoring at molecular level, as well as providing potential markers of diseases. Most of the statistical methods proposed for the classification of gene-expression data are either based on a continuous scale (eg. microarray data) or require a normal distribution assumption.

Rating: 
Average: 4 (1 vote)

Pages

Subscribe to Classification