You are here

RNA Editing

RNA editing is a molecular process through which some cells can make discrete changes to specific nucleotide sequences within a RNA molecule after it has been generated by RNA polymerase. RNA editing is relatively rare, and common forms of RNA processing (e.g. splicing, 5'-capping and 3'-polyadenylation) are not usually included as editing. Editing events may include the insertion, deletion, and base substitution of nucleotides within the edited RNA molecule.[Source: Wikipedia]

RBP-Var

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Transcription factors bind to the genome by forming specific contacts with the primary DNA sequence; however, RNA-binding proteins (RBPs) have greater scope to achieve binding specificity through the RNA secondary structure.

Rating: 
Average: 5 (1 vote)

Tailor

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Small silencing RNAs, including microRNAs, endogenous small interfering RNAs (endo-siRNAs) and Piwi-interacting RNAs (piRNAs), have been shown to play important roles in fine-tuning gene expression, defending virus and controlling transposons. Loss of small silencing RNAs or components in their pathways often leads to severe developmental defects, including lethality and sterility. Recently, non-templated addition of nucleotides to the 3' end, namely tailing, was found to associate with the processing and stability of small silencing RNAs.

Rating: 
Average: 5 (1 vote)

LNCediting

Submitted by ChenLiang on Fri, 10/21/2016 - 16:33

RNA editing is a widespread post-transcriptional mechanism that can make a single base change on specific nucleotide sequence in an RNA transcript. RNA editing events can result in missense codon changes and modulation of alternative splicing in mRNA, and modification of regulatory RNAs and their binding sites in noncoding RNAs. Recent computational studies accurately detected more than 2 million A-to-I RNA editing sites from next-generation sequencing (NGS).

Rating: 
Average: 5 (1 vote)

miR-EdiTar

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

A-to-I RNA editing is an important mechanism that consists of the conversion of specific adenosines into inosines in RNA molecules. Its dysregulation has been associated to several human diseases including cancer. Recent work has demonstrated a role for A-to-I editing in microRNA (miRNA)-mediated gene expression regulation. In fact, edited forms of mature miRNAs can target sets of genes that differ from the targets of their unedited forms. The specific deamination of mRNAs can generate novel binding sites in addition to potentially altering existing ones.

Rating: 
Average: 5 (1 vote)

RDDpred

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

RNA-editing is an important post-transcriptional RNA sequence modification performed by two catalytic enzymes, "ADAR"(A-to-I) and "APOBEC"(C-to-U). By utilizing high-throughput sequencing technologies, the biological function of RNA-editing has been actively investigated. Currently, RNA-editing is considered to be a key regulator that controls various cellular functions, such as protein activity, alternative splicing pattern of mRNA, and substitution of miRNA targeting site.

Rating: 
Average: 5 (1 vote)

RNA Editing Plus

Submitted by ChenLiang on Tue, 01/09/2018 - 17:05

Adenosine-to-inosine (A-to-I) editing by adenosine deaminase acting on the RNA (ADAR) proteins is one of the most frequent modifications during post- and co-transcription. To facilitate the assignment of biological functions to specific editing sites, we designed an automatic online platform to annotate A-to-I RNA editing sites in pre-mRNA splicing signals, microRNAs (miRNAs) and miRNA target untranslated regions (3' UTRs) from human (Homo sapiens) high-throughput sequencing data and predict their effects based on large-scale bioinformatic analysis.

Rating: 
Average: 5 (1 vote)

DREAM

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

detecting RNA editing associated with microRNAs, is a webserver for the identification of mature microRNA editing events using deep sequencing data. Raw microRNA sequencing reads can be provided as input, the reads are aligned against the genome and custom scripts process the data, search for potential editing sites and assess the statistical significance of the findings. The output is a text file with the location and the statistical description of all the putative editing sites detected.[1]

Rating: 
3
Average: 3 (2 votes)
Subscribe to RNA Editing