You are here

Integrated Analysis

H-RVM

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Recent advances in genome technologies and the subsequent collection of genomic information at various molecular resolutions hold promise to accelerate the discovery of new therapeutic targets. A critical step in achieving these goals is to develop efficient clinical prediction models that integrate these diverse sources of high-throughput data. This step is challenging due to the presence of high-dimensionality and complex interactions in the data.

Rating: 
Average: 5 (1 vote)

IGDB.NSCLC

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Lung cancer is the most common cause of cancer-related mortality with more than 1.4 million deaths per year worldwide. To search for significant somatic alterations in lung cancer, we analyzed, integrated and manually curated various data sets and literatures to present an integrated genomic database of non-small cell lung cancer (IGDB.NSCLC, http://igdb.nsclc.ibms.sinica.edu.tw).

Rating: 
Average: 5 (1 vote)

sydSeq

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

In practice, identifying and interpreting the functional impacts of the regulatory relationships between micro-RNA and messenger-RNA is non-trivial. The sheer scale of possible micro-RNA and messenger-RNA interactions can make the interpretation of results difficult.

Rating: 
Average: 5 (1 vote)

ENViz

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

ENViz (Enrichment Analysis and Visualization) is a Cytoscape app that performs joint enrichment analysis of two types of sample matched datasets in the context of systematic annotations. Such datasets may be gene expression or any other high-throughput data collected in the same set of samples. The enrichment analysis is done in the context of pathway information, gene ontology or any custom annotation of the data. The results of the analysis consist of significant associations between profiled elements of one of the datasets to the annotation terms (e.g.

Rating: 
Average: 5 (1 vote)

MD-SeeGH

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Recent advances in global genomic profiling methodologies have enabled multi-dimensional characterization of biological systems. Complete analysis of these genomic profiles require an in depth look at parallel profiles of segmental DNA copy number status, DNA methylation state, single nucleotide polymorphisms, as well as gene expression profiles. Due to the differences in data types it is difficult to conduct parallel analysis of multiple datasets from diverse platforms.

Rating: 
Average: 5 (1 vote)

miR2Gene

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

In recent years, a number of tools have been developed to explore microRNAs (miRNAs) by analyzing their target genes. However, a reverse problem, that is, inferring patterns of protein-coding genes through their miRNA regulators, has not been explored. As various miRNA annotation data become available, exploring gene patterns by analyzing the prior knowledge of their miRNA regulators is becoming more feasible.

Rating: 
Average: 5 (1 vote)

MMiRNA-Viewer

Submitted by ChenLiang on Mon, 01/09/2017 - 10:15

BACKGROUND: MicroRNAs (miRNA) are short nucleotides that interact with their target genes through 3' untranslated regions (UTRs). The Cancer Genome Atlas (TCGA) harbors an increasing amount of cancer genome data for both tumor and normal samples. However, there are few visualization tools focusing on concurrently displaying important relationships and attributes between miRNAs and mRNAs of both cancer tumor and normal samples.

Rating: 
Average: 5 (1 vote)

mirMeta

Submitted by ChenLiang on Mon, 01/09/2017 - 11:47

MiRNAs are short non-coding RNAs of about 22 nucleotides, which play critical roles in gene expression regulation. The biogenesis of miRNAs is largely determined by the sequence and structural features of their parental RNA molecules. Based on these features, multiple computational tools have been developed to predict if RNA transcripts contain miRNAs or not. Although being very successful, these predictors started to face multiple challenges in recent years. Many predictors were optimized using datasets of hundreds of miRNA samples.

Rating: 
Average: 5 (1 vote)

canEvolve

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Genome-wide profiles of tumors obtained using functional genomics platforms are being deposited to the public repositories at an astronomical scale, as a result of focused efforts by individual laboratories and large projects such as the Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium. Consequently, there is an urgent need for reliable tools that integrate and interpret these data in light of current knowledge and disseminate results to biomedical researchers in a user-friendly manner.

Rating: 
Average: 5 (1 vote)

SpidermiR

Submitted by ChenLiang on Sun, 09/10/2017 - 20:15

Gene Regulatory Networks (GRNs) control many biological systems, but how such network coordination is shaped is still unknown. GRNs can be subdivided into basic connections that describe how the network members interact e.g., co-expression, physical interaction, co-localization, genetic influence, pathways, and shared protein domains. The important regulatory mechanisms of these networks involve miRNAs.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Integrated Analysis