You are here

Integrated Analysis

miRNALasso

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) play important roles in general biological processes and diseases pathogenesis. Identifying miRNA target genes is an essential step to fully understand the regulatory effects of miRNAs. Many computational methods based on the sequence complementary rules and the miRNA and mRNA expression profiles have been developed for this purpose. It is noted that there have been many sequence features of miRNA targets available, including the context features of the target sites, the thermodynamic stability and the accessibility energy for miRNA-mRNA interaction.

Rating: 
Average: 5 (1 vote)

iSubgraph

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The high tumor heterogeneity makes it very challenging to identify key tumorigenic pathways as therapeutic targets. The integration of multiple omics data is a promising approach to identify driving regulatory networks in patient subgroups. Here, we propose a novel conceptual framework to discover patterns of miRNA-gene networks, observed frequently up- or down-regulated in a group of patients and to use such networks for patient stratification in hepatocellular carcinoma (HCC).

Rating: 
Average: 5 (1 vote)

expmicro

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are single-stranded non-coding RNAs shown to plays important regulatory roles in a wide range of biological processes and diseases. The functions and regulatory mechanisms of most of miRNAs are still poorly understood in part because of the difficulty in identifying the miRNA regulatory targets. To this end, computational methods have evolved as important tools for genome-wide target screening.

Rating: 
Average: 5 (1 vote)

netClass

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Predictive, stable and interpretable gene signatures are generally seen as an important step towards a better personalized medicine. During the last decade various methods have been proposed for that purpose. However, one important obstacle for making gene signatures a standard tool in clinics is the typical low reproducibility of signatures combined with the difficulty to achieve a clear biological interpretation. For that purpose in the last years there has been a growing interest in approaches that try to integrate information from molecular interaction networks.

Rating: 
Average: 5 (1 vote)

UQAM Wheat microRNA Portal

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Wheat is a major staple crop with broad adaptability to a wide range of environmental conditions. This adaptability involves several stress and developmentally responsive genes, in which microRNAs (miRNAs) have emerged as important regulatory factors. However, the currently used approaches to identify miRNAs in this polyploid complex system focus on conserved and highly expressed miRNAs avoiding regularly those that are often lineage-specific, condition-specific, or appeared recently in evolution.

Rating: 
Average: 5 (1 vote)

ChroMoS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Genome-wide association studies and re-sequencing projects are revealing an increasing number of disease-associated SNPs, a large fraction of which are non-coding. Although they could have relevance for disease susceptibility and progression, the lack of information about regulatory regions impedes the assessment of their functionality. Here we present a web server, ChroMoS (Chromatin Modified SNPs), which combines genetic and epigenetic data with the goal of facilitating SNPs' classification, prioritization and prediction of their functional consequences.

Rating: 
Average: 5 (1 vote)

H-RVM

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Recent advances in genome technologies and the subsequent collection of genomic information at various molecular resolutions hold promise to accelerate the discovery of new therapeutic targets. A critical step in achieving these goals is to develop efficient clinical prediction models that integrate these diverse sources of high-throughput data. This step is challenging due to the presence of high-dimensionality and complex interactions in the data.

Rating: 
Average: 5 (1 vote)

IGDB.NSCLC

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Lung cancer is the most common cause of cancer-related mortality with more than 1.4 million deaths per year worldwide. To search for significant somatic alterations in lung cancer, we analyzed, integrated and manually curated various data sets and literatures to present an integrated genomic database of non-small cell lung cancer (IGDB.NSCLC, http://igdb.nsclc.ibms.sinica.edu.tw).

Rating: 
Average: 5 (1 vote)

sydSeq

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

In practice, identifying and interpreting the functional impacts of the regulatory relationships between micro-RNA and messenger-RNA is non-trivial. The sheer scale of possible micro-RNA and messenger-RNA interactions can make the interpretation of results difficult.

Rating: 
Average: 5 (1 vote)

ENViz

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

ENViz (Enrichment Analysis and Visualization) is a Cytoscape app that performs joint enrichment analysis of two types of sample matched datasets in the context of systematic annotations. Such datasets may be gene expression or any other high-throughput data collected in the same set of samples. The enrichment analysis is done in the context of pathway information, gene ontology or any custom annotation of the data. The results of the analysis consist of significant associations between profiled elements of one of the datasets to the annotation terms (e.g.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Integrated Analysis