You are here

sncRNA

Comparative Sequencing of Plant Small RNAs

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Small RNAs play an important role in plant development, stress responses, and epigenetic regulation, primarily through their role in transcriptional and post-transcriptional silencing of specific target genes and loci. Most if not all plants utilize these small RNA signaling networks. We have developed a deep-sequencing based dataset of plant small RNAs, based on the hypothesis that comparisons among the complex pool of small RNAs from diverse plants will identify novel types of conserved, regulated, or species-specific molecules.

Rating: 
Average: 5 (1 vote)

MirPlex

Submitted by ChenLiang on Sun, 09/10/2017 - 20:27

MicroRNAs (miRNAs) are a class of small non-coding RNA (sRNA) involved in gene regulation through mRNA decay and translational repression. In animals, miRNAs have crucial regulatory functions during embryonic development and they have also been implicated in several diseases such as cancer, cardiovascular and neurodegenerative disorders. As such, it is of importance to successfully characterize new miRNAs in order to further study their function.

Rating: 
Average: 5 (1 vote)

StarScan

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Endogenous small non-coding RNAs (sRNAs), including microRNAs, PIWI-interacting RNAs and small interfering RNAs, play important gene regulatory roles in animals and plants by pairing to the protein-coding and non-coding transcripts. However, computationally assigning these various sRNAs to their regulatory target genes remains technically challenging. Recently, a high-throughput degradome sequencing method was applied to identify biologically relevant sRNA cleavage sites.

Rating: 
Average: 5 (1 vote)

sRNAMap

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Small non-coding RNAs (sRNAs) carry out a variety of biological functions and affect protein synthesis and protein activities in prokaryotes. Recently, numerous sRNAs and their targets were identified in Escherichia coli and in other bacteria. It is crucial to have a comprehensive resource concerning the annotation of small non-coding RNAs in microbial genomes.

Rating: 
Average: 5 (1 vote)

MISIS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

In eukaryotes, diverse small RNA (sRNA) populations including miRNAs, siRNAs and piRNAs regulate gene expression and repress transposons, transgenes and viruses. Functional sRNAs are associated with effector proteins based on their size and nucleotide composition. The sRNA populations are currently analyzed by deep sequencing that generates millions of reads which are then mapped to a reference sequence or database. Here we developed a tool called MISIS to view and analyze sRNA maps of genomic loci and viruses which spawn multiple sRNAs.

Rating: 
Average: 5 (1 vote)

iSRAP

Submitted by ChenLiang on Thu, 04/06/2017 - 17:59

Small non-coding RNAs have been significantly recognized as the key modulators in many biological processes, and are emerging as promising biomarkers for several diseases. These RNA species are transcribed in cells and can be packaged in extracellular vesicles, which are small vesicles released from many biotypes, and are involved in intercellular communication.

Rating: 
Average: 5 (1 vote)

DASHR

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Small non-coding RNAs (sncRNAs) are highly abundant RNAs, typically <100 nucleotides long, that act as key regulators of diverse cellular processes. Although thousands of sncRNA genes are known to exist in the human genome, no single database provides searchable, unified annotation, and expression information for full sncRNA transcripts and mature RNA products derived from these larger RNAs. Here, we present the Database of small human noncoding RNAs (DASHR). DASHR contains the most comprehensive information to date on human sncRNA genes and mature sncRNA products.

Rating: 
Average: 5 (1 vote)

plantDARIO

Submitted by ChenLiang on Thu, 04/06/2017 - 18:49

High-throughput sequencing techniques have made it possible to assay an organism's entire repertoire of small non-coding RNAs (ncRNAs) in an efficient and cost-effective manner. The moderate size of small RNA-seq datasets makes it feasible to provide free web services to the research community that provide many basic features of a small RNA-seq analysis, including quality control, read normalization, ncRNA quantification, and the prediction of putative novel ncRNAs. DARIO is one such system that so far has been focussed on animals.

Rating: 
Average: 5 (1 vote)

SIPHT

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Diverse bacterial genomes encode numerous small non-coding RNAs (sRNAs) that regulate myriad biological processes. While bioinformatic algorithms have proven effective in identifying sRNA-encoding loci, the lack of tools and infrastructure with which to execute these computationally demanding algorithms has limited their utilization. Genome-wide predictions of sRNA-encoding genes have been conducted in less than 3% of all sequenced bacterial strains, leading to critical gaps in current annotations.

Rating: 
Average: 5 (1 vote)

unitas

Submitted by ChenLiang on Sun, 09/10/2017 - 20:20

Next generation sequencing is a key technique in small RNA biology research that has led to the discovery of functionally different classes of small non-coding RNAs in the past years. However, reliable annotation of the extensive amounts of small non-coding RNA data produced by high-throughput sequencing is time-consuming and requires robust bioinformatics expertise. Moreover, existing tools have a number of shortcomings including a lack of sensitivity under certain conditions, limited number of supported species or detectable sub-classes of small RNAs.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to sncRNA