You are here

RNA-binding Protein (RBP)

RNA-binding proteins (often abbreviated as RBPs) are proteins that bind to the double or single stranded RNA[1] in cells and participate in forming ribonucleoprotein complexes. RBPs contain various structural motifs, such as RNA recognition motif (RRM), dsRNA binding domain, zinc finger and others. [Source: Wikipedia]

starBase

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) represent an important class of small non-coding RNAs (sRNAs) that regulate gene expression by targeting messenger RNAs. However, assigning miRNAs to their regulatory target genes remains technically challenging. Recently, high-throughput CLIP-Seq and degradome sequencing (Degradome-Seq) methods have been applied to identify the sites of Argonaute interaction and miRNA cleavage sites, respectively.

Rating: 
5
Average: 5 (2 votes)

DoRiNA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

In animals, RNA binding proteins (RBPs) and microRNAs (miRNAs) post-transcriptionally regulate the expression of virtually all genes by binding to RNA. Recent advances in experimental and computational methods facilitate transcriptome-wide mapping of these interactions. It is thought that the combinatorial action of RBPs and miRNAs on target mRNAs form a post-transcriptional regulatory code. We provide a database that supports the quest for deciphering this regulatory code.

Rating: 
5
Average: 5 (1 vote)

PARalyzer

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Crosslinking and immunoprecipitation (CLIP) protocols have made it possible to identify transcriptome-wide RNA-protein interaction sites. In particular, PAR-CLIP utilizes a photoactivatable nucleoside for more efficient crosslinking. We present an approach, centered on the novel PARalyzer tool, for mapping high-confidence sites from PAR-CLIP deep-sequencing data. We show that PARalyzer delineates sites with a high signal-to-noise ratio.

Rating: 
Average: 5 (1 vote)

REA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

RIP-chip is a high-throughput method to identify mRNAs that are targeted by RNA-binding proteins. The protein of interest is immunoprecipitated, and the identity and relative amount of mRNA associated with it is measured on microarrays. Even if a variety of methods is available to analyse microarray data, e.g. to detect differentially regulated genes, the additional experimental steps in RIP-chip require specialized methods.

Rating: 
Average: 5 (1 vote)

MiClip

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Cross-linking immunoprecipitation coupled with high-throughput sequencing (CLIP-Seq) has made it possible to identify the targeting sites of RNA-binding proteins in various cell culture systems and tissue types on a genome-wide scale. Here we present a novel model-based approach (MiClip) to identify high-confidence protein-RNA binding sites from CLIP-seq datasets. This approach assigns a probability score for each potential binding site to help prioritize subsequent validation experiments. The MiClip algorithm has been tested in both HITS-CLIP and PAR-CLIP datasets.

Rating: 
Average: 5 (1 vote)

RBP-Var

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Transcription factors bind to the genome by forming specific contacts with the primary DNA sequence; however, RNA-binding proteins (RBPs) have greater scope to achieve binding specificity through the RNA secondary structure.

Rating: 
Average: 5 (1 vote)

CLIPSeqTools

Submitted by ChenLiang on Thu, 04/06/2017 - 17:39

Immunoprecipitation of RNA binding proteins (RBPs) after in vivo crosslinking, coupled with sequencing of associated RNA footprints (HITS-CLIP, CLIP-seq), is a method of choice for the identification of RNA targets and binding sites for RBPs. Compared with RNA-seq, CLIP-seq analysis is widely diverse and depending on the RBPs that are analyzed, the approaches vary significantly, necessitating the development of flexible and efficient informatics tools.

Rating: 
Average: 5 (1 vote)

SimiRa

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

microRNAs and microRNA-independent RNA-binding proteins are 2 classes of post-transcriptional regulators that have been shown to cooperate in gene-expression regulation. We compared the genome-wide target sets of microRNAs and RBPs identified by recent CLIP-Seq technologies, finding that RBPs have distinct target sets and favor gene interaction network hubs. To identify microRNAs and RBPs with a similar functional context, we developed simiRa, a tool that compares enriched functional categories such as pathways and GO terms.

Rating: 
Average: 5 (1 vote)

CircInteractome

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Circular RNAs (circRNAs) are widely expressed in animal cells, but their biogenesis and functions are poorly understood. CircRNAs have been shown to act as sponges for miRNAs and may also potentially sponge RNA-binding proteins (RBPs) and are thus predicted to function as robust posttranscriptional regulators of gene expression. The joint analysis of large-scale transcriptome data coupled with computational analyses represents a powerful approach to elucidate possible biological roles of ribonucleoprotein (RNP) complexes.

Rating: 
5
Average: 4.5 (2 votes)

Seten

Submitted by ChenLiang on Thu, 04/06/2017 - 19:04

RNA-binding proteins (RBPs) control the regulation of gene expression in eukaryotic genomes at post-transcriptional level by binding to their cognate RNAs. Although several variants of CLIP (crosslinking and immunoprecipitation) protocols are currently available to study the global protein-RNA interaction landscape at single nucleotide resolution in a cell, currently there are very few tools which can facilitate understanding and dissecting the functional associations of RBPs from the resulting binding maps.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to RNA-binding Protein (RBP)