EmDL
Abstract is not available.[1]
High-confidence prediction of complex traits such as disease risk or drug response is an ultimate goal of personalized medicine. Although genome-wide association studies have discovered thousands of well-replicated polymorphisms associated with a broad spectrum of complex traits, the combined predictive power of these associations for any given trait is generally too low to be of clinical relevance. We propose a novel systems approach to complex trait prediction, which leverages and integrates similarity in genetic, transcriptomic, or other omics-level data.
Respiratory cancer database (RespCanDB) is a genomic and proteomic database of cancer of respiratory organ. It also includes the information of medicinal plants used for the treatment of various respiratory cancers with structure of its active constituents as well as pharmacological and chemical information of drug associated with various respiratory cancers.
MOTIVATION: It is often the case in biological measurement data that results are given as a ranked list of quantities-for example, differential expression (DE) of genes as inferred from microarrays or RNA-seq. Recent years brought considerable progress in statistical tools for enrichment analysis in ranked lists. Several tools are now available that allow users to break the fixed set paradigm in assessing statistical enrichment of sets of genes. Continuing with the example, these tools identify factors that may be associated with measured differential expression.
The DiseaseConnect (http://disease-connect.org) is a web server for analysis and visualization of a comprehensive knowledge on mechanism-based disease connectivity. The traditional disease classification system groups diseases with similar clinical symptoms and phenotypic traits. Thus, diseases with entirely different pathologies could be grouped together, leading to a similar treatment design. Such problems could be avoided if diseases were classified based on their molecular mechanisms.
Identification of disease-associated miRNAs (disease miRNAs) is critical for understanding disease etiology and pathogenesis. Since miRNAs exert their functions by regulating the expression of their target mRNAs, several methods based on the target genes were proposed to predict disease miRNA candidates. They achieved only limited success as they all suffered from the high false-positive rate of target prediction results.
As a promising field of individualized therapy, non-coding RNA pharmacogenomics promotes the understanding of different individual responses to certain drugs and acts as a reasonable reference for clinical treatment. However, relevant information is scattered across the published literature, which is inconvenient for researchers to explore non-coding RNAs that are involved in drug resistance. To address this, we systemically identified validated and predicted drug resistance-associated microRNAs and long non-coding RNAs through manual curation and computational analysis.
MicroRNAs (miRNAs) play crucial roles in post-transcriptional regulations and various cellular processes. The identification of disease-related miRNAs provides great insights into the underlying pathogenesis of diseases at a system level. However, most existing computational approaches are biased towards known miRNA-disease associations, which is inappropriate for those new diseases or miRNAs without any known association information.
We have developed Pharmacogenomics And Cell database (PACdb), a results database that makes available relationships between single nucleotide polymorphisms, gene expression, and cellular sensitivity to various drugs in cell-based models to help determine genetic variants associated with drug response. The current version also supports summary analysis on differentially expressed genes between the HapMap samples of European and African ancestry, as well as queries for summary information of correlations between gene expression and pharmacological phenotypes.
The prediction of microRNA targets is a challenging task that has given rise to several prediction algorithms. Databases of predicted targets can be used in a microRNA target enrichment analysis, enhancing our capacity to extract functional information from gene lists. However, the available tools in this field analyze gene sets one by one limiting their use in a meta-analysis. Here, we present an R system for miRNA enrichment analysis that is suitable for systems biology.