You are here

CLIP-Seq

High-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP, also known as CLIP-Seq) is a genome-wide means of mapping protein–RNA binding sites or RNA modification sites in vivo. [Source: Wikipedia]

miRTarBase

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs), i.e. small non-coding RNA molecules (~22nt), can bind to one or more target sites on a gene transcript to negatively regulate protein expression, subsequently controlling many cellular mechanisms. A current and curated collection of miRNA-target interactions (MTIs) with experimental support is essential to thoroughly elucidating miRNA functions under different conditions and in different species.

Rating: 
Average: 5 (1 vote)

starBase

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) represent an important class of small non-coding RNAs (sRNAs) that regulate gene expression by targeting messenger RNAs. However, assigning miRNAs to their regulatory target genes remains technically challenging. Recently, high-throughput CLIP-Seq and degradome sequencing (Degradome-Seq) methods have been applied to identify the sites of Argonaute interaction and miRNA cleavage sites, respectively.

Rating: 
5
Average: 5 (2 votes)

DIANA-LncBase

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Recently, the attention of the research community has been focused on long non-coding RNAs (lncRNAs) and their physiological/pathological implications. As the number of experiments increase in a rapid rate and transcriptional units are better annotated, databases indexing lncRNA properties and function gradually become essential tools to this process. Aim of DIANA-LncBase (www.microrna.gr/LncBase) is to reinforce researchers' attempts and unravel microRNA (miRNA)-lncRNA putative functional interactions.

Rating: 
Average: 5 (1 vote)

NPInter

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The noncoding RNAs and protein related biomacromolecules interaction database (NPInter; http://bioinfo.ibp.ac.cn/NPInter or http://www.bioinfo.org.cn/NPInter) is a database that documents experimentally determined functional interactions between noncoding RNAs (ncRNAs) and protein related biomacromolecules (PRMs) (proteins, mRNAs or genomic DNAs).

Rating: 
Average: 5 (1 vote)

Antar

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Microarray expression analyses following miRNA transfection/inhibition and, more recently, Argonaute cross-linked immunoprecipitation (CLIP)-seq assays have been used to detect miRNA target sites. CLIP and expression approaches measure differing stages of miRNA functioning-initial binding of the miRNP complex and subsequent message repression. We use nonparametric predictive models to characterize a large number of known target and flanking features, utilizing miRNA transfection, HITS-CLIP, and PAR-CLIP data.

Rating: 
Average: 5 (1 vote)

Sfold

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The Sfold web server provides user-friendly access to Sfold, a recently developed nucleic acid folding software package, via the World Wide Web (WWW). The software is based on a new statistical sampling paradigm for the prediction of RNA secondary structure. One of the main objectives of this software is to offer computational tools for the rational design of RNA-targeting nucleic acids, which include small interfering RNAs (siRNAs), antisense oligonucleotides and trans-cleaving ribozymes for gene knock-down studies.

Rating: 
5
Average: 5 (2 votes)

miRTarCLIP

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) play a critical role in down-regulating gene expression. By coupling with Argonaute family proteins, miRNAs bind to target sites on mRNAs and employ translational repression. A large amount of miRNA-target interactions (MTIs) have been identified by the crosslinking and immunoprecipitation (CLIP) and the photoactivatable-ribonucleoside-enhanced CLIP (PAR-CLIP) along with the next-generation sequencing (NGS). PAR-CLIP shows high efficiency of RNA co-immunoprecipitation, but it also lead to T to C conversion in miRNA-RNA-protein crosslinking regions.

Rating: 
Average: 5 (1 vote)

MiClip

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Cross-linking immunoprecipitation coupled with high-throughput sequencing (CLIP-Seq) has made it possible to identify the targeting sites of RNA-binding proteins in various cell culture systems and tissue types on a genome-wide scale. Here we present a novel model-based approach (MiClip) to identify high-confidence protein-RNA binding sites from CLIP-seq datasets. This approach assigns a probability score for each potential binding site to help prioritize subsequent validation experiments. The MiClip algorithm has been tested in both HITS-CLIP and PAR-CLIP datasets.

Rating: 
Average: 5 (1 vote)

Avishkar

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are small regulatory RNA that mediate RNA interference by binding to various mRNA target regions. There have been several computational methods for the identification of target mRNAs for miRNAs. However, these have considered all contributory features as scalar representations, primarily, as thermodynamic or sequence-based features. Further, a majority of these methods solely target canonical sites, which are sites with "seed" complementarity.

Rating: 
Average: 5 (1 vote)

CLIPSeqTools

Submitted by ChenLiang on Thu, 04/06/2017 - 17:39

Immunoprecipitation of RNA binding proteins (RBPs) after in vivo crosslinking, coupled with sequencing of associated RNA footprints (HITS-CLIP, CLIP-seq), is a method of choice for the identification of RNA targets and binding sites for RBPs. Compared with RNA-seq, CLIP-seq analysis is widely diverse and depending on the RBPs that are analyzed, the approaches vary significantly, necessitating the development of flexible and efficient informatics tools.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to CLIP-Seq