You are here

pre-miRNA

microRNA precursor is a small non-coding RNA that regulates gene expression. Animal microRNAs are transcribed as pri-miRNA (primary miRNA) of varying length which in turns are processed in the nucleus by Drosha into ~70 nucleotide stem-loop precursor called pre-miRNA (preliminary miRNA) and subsequently processed by the Dicer enzyme to give a mature ~22 nucleotide product. [Source: Wikipedia]

HeteroMirPred

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

An ensemble classifier approach for microRNA precursor (pre-miRNA) classification was proposed based upon combining a set of heterogeneous algorithms including support vector machine (SVM), k-nearest neighbors (kNN) and random forest (RF), then aggregating their prediction through a voting system. Additionally, the proposed algorithm, the classification performance was also improved using discriminative features, self-containment and its derivatives, which have shown unique structural robustness characteristics of pre-miRNAs.

Rating: 
Average: 5 (1 vote)

Discriminant

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Computational discovery of microRNAs (miRNA) is based on pre-determined sets of features from miRNA precursors (pre-miRNA). Some feature sets are composed of sequence-structure patterns commonly found in pre-miRNAs, while others are a combination of more sophisticated RNA features. In this work, we analyze the discriminant power of seven feature sets, which are used in six pre-miRNA prediction tools. The analysis is based on the classification performance achieved with these feature sets for the training algorithms used in these tools.

Rating: 
Average: 5 (1 vote)

GREENC

Submitted by ChenLiang on Thu, 04/06/2017 - 17:53

Long non-coding RNAs (lncRNAs) are functional non-translated molecules greater than 200 nt. Their roles are diverse and they are usually involved in transcriptional regulation. LncRNAs still remain largely uninvestigated in plants with few exceptions. Experimentally validated plant lncRNAs have been shown to regulate important agronomic traits such as phosphate starvation response, flowering time and interaction with symbiotic organisms, making them of great interest in plant biology and in breeding.

Rating: 
Average: 5 (1 vote)

PMirP

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNA is a type of small non-coding RNAs, which usually has a stem-loop structure. As an important stage of microRNA, the pre-microRNA is transported from nuclear to cytoplasm by exportin5 and finally cleaved into mature microRNA. Structure-sequence features and minimum of free energy of secondary structure have been used for predicting pre-microRNA. Meanwhile, the double helix structure with free nucleotides and base-pairing features is used to identify pre-miRNA for the first time.

Rating: 
Average: 5 (1 vote)

ZooMir

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are endogenous non-protein-coding RNAs of approximately 22 nucleotides. Thousands of miRNA genes have been identified (computationally and/or experimentally) in a variety of organisms, which suggests that miRNA genes have been widely shared and distributed among species. Here, we used unique miRNA sequence patterns to scan the genome sequences of 56 bilaterian animal species for locating candidate miRNAs first.

Rating: 
Average: 5 (1 vote)

rnaanalys

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are small single-stranded noncoding RNAs that play an important role in post-transcriptional regulation of gene expression. In this paper, we present a web server for ab initio prediction of the human miRNAs and their precursors. The prediction methods are based on the hidden Markov Models and the context-structural characteristics. By taking into account the identified patterns of primary and secondary structures of the pre-miRNAs, a new HMM model is proposed and the existing context-structural Markov model is modified.

Rating: 
Average: 5 (1 vote)

miRD

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

High-throughput deep-sequencing technology has generated an unprecedented number of expressed short sequence reads, presenting not only an opportunity but also a challenge for prediction of novel microRNAs. To verify the existence of candidate microRNAs, we have to show that these short sequences can be processed from candidate pre-microRNAs. However, it is laborious and time consuming to verify these using existing experimental techniques.

Rating: 
Average: 5 (1 vote)

Mirinho

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Several methods exist for the prediction of precursor miRNAs (pre-miRNAs) in genomic or sRNA-seq (small RNA sequences) data produced by NGS (Next Generation Sequencing). One key information used for this task is the characteristic hairpin structure adopted by pre-miRNAs, that in general are identified using RNA folders whose complexity is cubic in the size of the input. The vast majority of pre-miRNA predictors then rely on further information learned from previously validated miRNAs from the same or a closely related genome for the final prediction of new miRNAs.

Rating: 
Average: 5 (1 vote)

miRBoost

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Identification of microRNAs (miRNAs) is an important step toward understanding post-transcriptional gene regulation and miRNA-related pathology. Difficulties in identifying miRNAs through experimental techniques combined with the huge amount of data from new sequencing technologies have made in silico discrimination of bona fide miRNA precursors from non-miRNA hairpin-like structures an important topic in bioinformatics. Among various techniques developed for this classification problem, machine learning approaches have proved to be the most promising.

Rating: 
Average: 5 (1 vote)

iMiRNA-PseDPC

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

A microRNA (miRNA) is a small non-coding RNA molecule, functioning in transcriptional and post-transcriptional regulation of gene expression. The human genome may encode over 1000 miRNAs. Albeit poorly characterized, miRNAs are widely deemed as important regulators of biological processes. Aberrant expression of miRNAs has been observed in many cancers and other disease states, indicating that they are deeply implicated with these diseases, particularly in carcinogenesis.

Rating: 
5
Average: 4.5 (2 votes)

Pages

Subscribe to pre-miRNA