You are here

Next Generation Sequencing (NGS)

The high demand for low-cost sequencing has driven the development of high-throughput sequencing, which also goes by the term Next Generation Sequencing (NGS). Thousands or millions of sequences are concurrently produced in a single next-generation sequencing process. Next generation sequencing has become a commodity. [Source: WikiBooks]

mirTools

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

miRNAs are small, non-coding RNA that negatively regulate gene expression at post-transcriptional level, which play crucial roles in various physiological and pathological processes, such as development and tumorigenesis. Although deep sequencing technologies have been applied to investigate various small RNA transcriptomes, their computational methods are far away from maturation as compared to microarray-based approaches. In this study, a comprehensive web server mirTools was developed to allow researchers to comprehensively characterize small RNA transcriptome.

Rating: 
Average: 5 (1 vote)

deepBase

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Advances in high-throughput next-generation sequencing technology have reshaped the transcriptomic research landscape. However, exploration of these massive data remains a daunting challenge. In this study, we describe a novel database, deepBase, which we have developed to facilitate the comprehensive annotation and discovery of small RNAs from transcriptomic data.

Rating: 
Average: 5 (1 vote)

SeqBuster

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

High-throughput sequencing technologies enable direct approaches to catalog and analyze snapshots of the total small RNA content of living cells. Characterization of high-throughput sequencing data requires bioinformatic tools offering a wide perspective of the small RNA transcriptome. Here we present SeqBuster, a highly versatile and reliable web-based toolkit to process and analyze large-scale small RNA datasets.

Rating: 
Average: 5 (1 vote)

DIANA-mirExTra

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

High-throughput gene expression experiments are widely used to identify the role of genes involved in biological conditions of interest. MicroRNAs (miRNA) are regulatory molecules that have been functionally associated with several developmental programs and their deregulation with diverse diseases including cancer.

Rating: 
Average: 5 (1 vote)

miRNAkey

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are short abundant non-coding RNAs critical for many cellular processes. Deep sequencing (next-generation sequencing) technologies are being readily used to receive a more accurate depiction of miRNA expression profiles in living cells. This type of analysis is a key step towards improving our understanding of the complexity and mode of miRNA regulation.

Rating: 
Average: 5 (1 vote)

DSAP

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

DSAP is an automated multiple-task web service designed to provide a total solution to analyzing deep-sequencing small RNA datasets generated by next-generation sequencing technology. DSAP uses a tab-delimited file as an input format, which holds the unique sequence reads (tags) and their corresponding number of copies generated by the Solexa sequencing platform.

Rating: 
Average: 5 (1 vote)

miRDeep*

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

miRDeep and its varieties are widely used to quantify known and novel micro RNA (miRNA) from small RNA sequencing (RNAseq). This article describes miRDeep*, our integrated miRNA identification tool, which is modeled off miRDeep, but the precision of detecting novel miRNAs is improved by introducing new strategies to identify precursor miRNAs. miRDeep* has a user-friendly graphic interface and accepts raw data in FastQ and Sequence Alignment Map (SAM) or the binary equivalent (BAM) format.

Rating: 
Average: 5 (1 vote)

SHRiMP

Submitted by ChenLiang on Thu, 04/06/2017 - 19:08

The development of Next Generation Sequencing technologies, capable of sequencing hundreds of millions of short reads (25-70 bp each) in a single run, is opening the door to population genomic studies of non-model species. In this paper we present SHRiMP - the SHort Read Mapping Package: a set of algorithms and methods to map short reads to a genome, even in the presence of a large amount of polymorphism.

Rating: 
Average: 5 (1 vote)

YM500

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are small RNAs ~22 nt in length that are involved in the regulation of a variety of physiological and pathological processes. Advances in high-throughput small RNA sequencing (smRNA-seq), one of the next-generation sequencing applications, have reshaped the miRNA research landscape.

Rating: 
Average: 5 (1 vote)

DARIO

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Small non-coding RNAs (ncRNAs) such as microRNAs, snoRNAs and tRNAs are a diverse collection of molecules with several important biological functions. Current methods for high-throughput sequencing for the first time offer the opportunity to investigate the entire ncRNAome in an essentially unbiased way. However, there is a substantial need for methods that allow a convenient analysis of these overwhelmingly large data sets. Here, we present DARIO, a free web service that allows to study short read data from small RNA-seq experiments.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Next Generation Sequencing (NGS)