You are here

miRNA Family

Rfam

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are small noncoding RNA gene products about 22 nt long that are processed by Dicer from precursors with a characteristic hairpin secondary structure. Guidelines are presented for the identification and annotation of new miRNAs from diverse organisms, particularly so that miRNAs can be reliably distinguished from other RNAs such as small interfering RNAs. We describe specific criteria for the experimental verification of miRNAs, and conventions for naming miRNAs and miRNA genes.

Rating: 
5
Average: 5 (2 votes)

miRNA - Target Gene Prediction at EMBL

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are short RNA molecules that regulate gene expression by binding to target messenger RNAs and by controlling protein production or causing RNA cleavage. To date, functions have been assigned to only a few of the hundreds of identified miRNAs, in part because of the difficulty in identifying their targets. The short length of miRNAs and the fact that their complementarity to target sequences is imperfect mean that target identification in animal genomes is not possible by standard sequence comparison methods.

Rating: 
5
Average: 5 (2 votes)

mirclust

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are a group of small, approximately 21 nt long, riboregulators inhibiting gene expression at a post-transcriptional level. Their most distinctive structural feature is the foldback hairpin of their precursor pre-miRNAs. Even though each pre-miRNA deposited in miRBase has its secondary structure already predicted, little is known about the patterns of structural conservation among pre-miRNAs.

Rating: 
Average: 5 (1 vote)

soybean_mirna

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Small non-coding RNAs (21 to 24 nucleotides) regulate a number of developmental processes in plants and animals by silencing genes using multiple mechanisms. Among these, the most conserved classes are microRNAs (miRNAs) and small interfering RNAs (siRNAs), both of which are produced by RNase III-like enzymes called Dicers. Many plant miRNAs play critical roles in nutrient homeostasis, developmental processes, abiotic stress and pathogen responses. Currently, only 70 miRNA have been identified in soybean.

Rating: 
Average: 5 (1 vote)

TAM

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are a class of important gene regulators. The number of identified miRNAs has been increasing dramatically in recent years. An emerging major challenge is the interpretation of the genome-scale miRNA datasets, including those derived from microarray and deep-sequencing. It is interesting and important to know the common rules or patterns behind a list of miRNAs, (i.e. the deregulated miRNAs resulted from an experiment of miRNA microarray or deep-sequencing).

Rating: 
Average: 5 (1 vote)

miRCode

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Although small non-coding RNAs, such as microRNAs, have well-established functions in the cell, long non-coding RNAs (lncRNAs) have only recently started to emerge as abundant regulators of cell physiology, and their functions may be diverse. A small number of studies describe interactions between small and lncRNAs, with lncRNAs acting either as inhibitory decoys or as regulatory targets of microRNAs, but such interactions are still poorly explored.

Rating: 
Average: 5 (1 vote)

miROrtho

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are short, non-protein coding RNAs that direct the widespread phenomenon of post-transcriptional regulation of metazoan genes. The mature approximately 22-nt long RNA molecules are processed from genome-encoded stem-loop structured precursor genes. Hundreds of such genes have been experimentally validated in vertebrate genomes, yet their discovery remains challenging, and substantially higher numbers have been estimated.

Rating: 
Average: 5 (1 vote)

rice_build

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The diversity of microRNAs and small-interfering RNAs has been extensively explored within angiosperms by focusing on a few key organisms such as Oryza sativa and Arabidopsis thaliana. A deeper division of the plants is defined by the radiation of the angiosperms and gymnosperms, with the latter comprising the commercially important conifers. The conifers are expected to provide important information regarding the evolution of highly conserved small regulatory RNAs.

Rating: 
Average: 5 (1 vote)

HDMP

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The identification of human disease-related microRNAs (disease miRNAs) is important for further investigating their involvement in the pathogenesis of diseases. More experimentally validated miRNA-disease associations have been accumulated recently. On the basis of these associations, it is essential to predict disease miRNAs for various human diseases. It is useful in providing reliable disease miRNA candidates for subsequent experimental studies.

Rating: 
Average: 5 (1 vote)

miRCluster

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Since the initial annotation of microRNAs (miRNAs) in 2001, many studies have sought to identify additional miRNAs experimentally or computationally in various species. MiRNAs act with the Argonaut family of proteins to regulate target messenger RNAs (mRNAs) post-transcriptionally. Currently, researches mainly focus on single miRNA function study.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to miRNA Family