miRNeye
MicroRNAs (miRNAs) are key regulators of biological processes. To define miRNA function in the eye, it is essential to determine a high-resolution profile of their spatial and temporal distribution.
MicroRNAs (miRNAs) are key regulators of biological processes. To define miRNA function in the eye, it is essential to determine a high-resolution profile of their spatial and temporal distribution.
Non-coding RNAs (ncRNA) account for a large portion of the transcribed genomic output. This diverse family of untranslated RNA molecules play a crucial role in cellular function. The use of 'deep sequencing' technology (also known as 'next generation sequencing') to infer transcript expression levels in general, and ncRNA specifically, is becoming increasingly common in molecular and clinical laboratories.
Small non-coding RNAs have been significantly recognized as the key modulators in many biological processes, and are emerging as promising biomarkers for several diseases. These RNA species are transcribed in cells and can be packaged in extracellular vesicles, which are small vesicles released from many biotypes, and are involved in intercellular communication.
MicroRNAs (miRNAs) are an integral part of gene regulation at the post-transcriptional level. Recently, it has been shown that pairs of miRNAs can repress the translation of a target mRNA in a cooperative manner, which leads to an enhanced effectiveness and specificity in target repression. However, it remains unclear which miRNA pairs can synergize and which genes are target of cooperative miRNA regulation.
MicroRNAs (miRNAs) play important roles in human cancers. In previous studies, we have demonstrated that both 5p-arm and 3p-arm of mature miRNAs could be expressed from the same precursor and we further interrogated the 5p-arm and 3p-arm miRNA expression with a comprehensive arm feature annotation list. To assist biologists to visualize the differential 5p-arm and 3p-arm miRNA expression patterns, we utilized a user-friendly mobile App to display. The Cancer Genome Atlas (TCGA) miRNA-Seq expression information.
Validation of clinical biomarkers and response to therapy is a challenging topic in cancer research. An important source of information for virtual validation is the datasets generated from multi-center cancer research projects such as The Cancer Genome Atlas project (TCGA). These data enable investigation of genetic and epigenetic changes responsible for cancer onset and progression, response to cancer therapies, and discovery of the molecular profiles of various cancers.
RNA editing is a widespread post-transcriptional mechanism that can make a single base change on specific nucleotide sequence in an RNA transcript. RNA editing events can result in missense codon changes and modulation of alternative splicing in mRNA, and modification of regulatory RNAs and their binding sites in noncoding RNAs. Recent computational studies accurately detected more than 2 million A-to-I RNA editing sites from next-generation sequencing (NGS).
microRNAs (miRNAs) are endogenous short RNAs that mediate vast networks of post-transcriptional gene regulation. Although computational searches and experimental profiling provide evidence for hundreds of functional targets for individual miRNAs, such data rarely provide clear insight into the phenotypic consequences of manipulating miRNAs in vivo. We describe a genome-wide collection of 165 Drosophila miRNA transgenes and find that a majority induced specific developmental defects, including phenocopies of mutants in myriad cell-signaling and patterning genes.
Ovarian cancer has the lowest survival rate of all gynaecologic cancers and is characterised by a lack of early symptoms and frequent late stage diagnosis. There is a paucity of robust molecular markers that are independent of and complementary to clinical parameters such as disease stage and tumour grade.
Colorectal cancer (CRC) is a cancer of growing incidence that associates with a high mortality rate worldwide. There is a poor understanding of the heterogeneity of CRC with regard to causative genetic mutations and gene regulatory mechanisms. Previous studies have identified several susceptibility genes in small-scale experiments. However, the information has not been comprehensively and systematically compiled and interpreted. In this study, we constructed the gbCRC, the first literature-based gene resource for investigating CRC-related human genes.