You are here

Alignment

In bioinformatics, a sequence alignment is a way of arranging the sequences of DNA, RNA, or protein to identify regions of similarity that may be a consequence of functional, structural, or evolutionary relationships between the sequences. Sequence alignments are also used for non-biological sequences, such as calculating the edit distance cost between strings in a natural language or in financial data.[Source: Wikipedia]

PETfold & PETcofold

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Computational methods for determining the secondary structure of RNA sequences from given alignments are currently either based on thermodynamic folding, compensatory base pair substitutions or both. However, there is currently no approach that combines both sources of information in a single optimization problem. Here, we present a model that formally integrates both the energy-based and evolution-based approaches to predict the folding of multiple aligned RNA sequences.

Rating: 
Average: 5 (1 vote)

miRge

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Small RNA RNA-seq for microRNAs (miRNAs) is a rapidly developing field where opportunities still exist to create better bioinformatics tools to process these large datasets and generate new, useful analyses. We built miRge to be a fast, smart small RNA-seq solution to process samples in a highly multiplexed fashion. miRge employs a Bayesian alignment approach, whereby reads are sequentially aligned against customized mature miRNA, hairpin miRNA, noncoding RNA and mRNA sequence libraries.

Rating: 
Average: 5 (1 vote)

ISRNA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Integrative Short Reads NAvigator (ISRNA) is an online toolkit for analyzing high-throughput small RNA sequencing data. Besides the high-speed genome mapping function, ISRNA provides statistics for genomic location, length distribution and nucleotide composition bias analysis of sequence reads. Number of reads mapped to known microRNAs and other classes of short non-coding RNAs, coverage of short reads on genes, expression abundance of sequence reads as well as some other analysis functions are also supported.

Rating: 
Average: 5 (1 vote)

SeqTrimMap

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Deep sequencing provides inexpensive opportunities to characterize the transcriptional diversity of known genomes. The AB SOLiD technology generates millions of short sequencing reads in color-space; that is, the raw data is a sequence of colors, where each color represents 2 nt and each nucleotide is represented by two consecutive colors. This strategy is purported to have several advantages, including increased ability to distinguish sequencing errors from polymorphisms. Several programs have been developed to map short reads to genomes in color space.

Rating: 
Average: 5 (1 vote)

PsRobot

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Small RNAs (smRNAs) in plants, mainly microRNAs and small interfering RNAs, play important roles in both transcriptional and post-transcriptional gene regulation. The broad application of high-throughput sequencing technology has made routinely generation of bulk smRNA sequences in laboratories possible, thus has significantly increased the need for batch analysis tools. PsRobot is a web-based easy-to-use tool dedicated to the identification of smRNAs with stem-loop shaped precursors (such as microRNAs and short hairpin RNAs) and their target genes/transcripts.

Rating: 
Average: 5 (1 vote)

MapMi

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

A large effort to discover microRNAs (miRNAs) has been under way. Currently miRBase is their primary repository, providing annotations of primary sequences, precursors and probable genomic loci. In many cases miRNAs are identical or very similar between related (or in some cases more distant) species. However, miRBase focuses on those species for which miRNAs have been directly confirmed. Secondly, specific miRNAs or their loci are sometimes not annotated even in well-covered species.

Rating: 
Average: 5 (1 vote)

mrsFAST

Submitted by ChenLiang on Sun, 09/10/2017 - 17:15

Abstract is not available.[1]

Rating: 
Average: 5 (1 vote)

SAMMate

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Next Generation Sequencing (NGS) technology generates tens of millions of short reads for each DNA/RNA sample. A key step in NGS data analysis is the short read alignment of the generated sequences to a reference genome. Although storing alignment information in the Sequence Alignment/Map (SAM) or Binary SAM (BAM) format is now standard, biomedical researchers still have difficulty accessing this information.

Rating: 
Average: 5 (1 vote)

miRSeq

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) present diverse regulatory functions in a wide range of biological activities. Studies on miRNA functions generally depend on determining miRNA expression profiles between libraries by using a next-generation sequencing (NGS) platform. Currently, several online web services are developed to provide small RNA NGS data analysis. However, the submission of large amounts of NGS data, conversion of data format, and limited availability of species bring problems. In this study, we developed miRSeq to provide alternatives.

Rating: 
Average: 5 (1 vote)

Tailor

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Small silencing RNAs, including microRNAs, endogenous small interfering RNAs (endo-siRNAs) and Piwi-interacting RNAs (piRNAs), have been shown to play important roles in fine-tuning gene expression, defending virus and controlling transposons. Loss of small silencing RNAs or components in their pathways often leads to severe developmental defects, including lethality and sterility. Recently, non-templated addition of nucleotides to the 3' end, namely tailing, was found to associate with the processing and stability of small silencing RNAs.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Alignment