You are here

Xenopus

Director

Submitted by ChenLiang on Tue, 01/09/2018 - 17:47

High-throughput measurement technologies have triggered a rise in large-scale cancer studies containing multiple levels of molecular data. While there are a number of efficient methods to analyze individual data types, there are far less that enhance data interpretation after analysis. We present the R package Director, a dynamic visualization approach to linking and interrogating multiple levels of molecular data after analysis for clinically meaningful, actionable insights.

Rating: 
5
Average: 4.5 (2 votes)

miRQuest

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

This report describes the miRQuest - a novel middleware available in a Web server that allows the end user to do the miRNA research in a user-friendly way. It is known that there are many prediction tools for microRNA (miRNA) identification that use different programming languages and methods to realize this task. It is difficult to understand each tool and apply it to diverse datasets and organisms available for miRNA analysis. miRQuest can easily be used by biologists and researchers with limited experience with bioinformatics.

Rating: 
5
Average: 4.5 (2 votes)

ICG

Submitted by ChenLiang on Tue, 01/09/2018 - 18:32

Real-time quantitative PCR (RT-qPCR) has become a widely used method for accurate expression profiling of targeted mRNA and ncRNA. Selection of appropriate internal control genes for RT-qPCR normalization is an elementary prerequisite for reliable expression measurement. Here, we present ICG (http://icg.big.ac.cn), a wiki-driven knowledgebase for community curation of experimentally validated internal control genes as well as their associated experimental conditions.

Rating: 
Average: 5 (1 vote)

miTRATA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

We describe miTRATA, the first web-based tool for microRNA Truncation and Tailing Analysis--the analysis of 3' modifications of microRNAs including the loss or gain of nucleotides relative to the canonical sequence. miTRATA is implemented in Python (version 3) and employs parallel processing modules to enhance its scalability when analyzing multiple small RNA (sRNA) sequencing datasets. It utilizes miRBase, currently version 21, as a source of known microRNAs for analysis. miTRATA notifies user(s) via email to download as well as visualize the results online.

Rating: 
Average: 4.5 (2 votes)

miRandb

Submitted by ChenLiang on Mon, 01/09/2017 - 11:45

Recent discovery of thousands of small and large noncoding RNAs, in parallel to technical improvements enabling scientists to study the transcriptome in much higher depth, has resulted in massive data generation. This burst of information prompts the development of easily accessible resources for storage, retrieval and analysis of raw and processed data, and hundreds of Web-based tools dedicated to these tasks have been made available.

Rating: 
5
Average: 5 (2 votes)

miRCarta

Submitted by ChenLiang on Tue, 01/09/2018 - 18:46

The continuous increase of available biological data as consequence of modern high-throughput technologies poses new challenges for analysis techniques and database applications. Especially for miRNAs, one class of small non-coding RNAs, many algorithms have been developed to predict new candidates from next-generation sequencing data. While the amount of publications describing novel miRNA candidates keeps steadily increasing, the current gold standard database for miRNAs - miRBase - has not been updated since June 2014.

Rating: 
Average: 5 (1 vote)

BioVLAB-MMIA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs, by regulating the expression of hundreds of target genes, play critical roles in developmental biology and the etiology of numerous diseases, including cancer. As a vast amount of microRNA expression profile data are now publicly available, the integration of microRNA expression data sets with gene expression profiles is a key research problem in life science research.

Rating: 
Average: 5 (1 vote)

iScreen

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

High-throughput RNA interference (RNAi) screening has opened up a path to investigating functional genomics in a genome-wide pattern. However, such studies are often restricted to assays that have a single readout format. Recently, advanced image technologies have been coupled with high-throughput RNAi screening to develop high-content screening, in which one or more cell image(s), instead of a single readout, were generated from each well.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Xenopus