You are here

Virus

si-shRNA Selector

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Prediction of efficient oligonucleotides for RNA interference presents a serious challenge, especially for the development of genome-wide RNAi libraries which encounter difficulties and limitations due to ambiguities in the results and the requirement for significant computational resources. Here we present a fast and practical algorithm for shRNA design based on the thermodynamic parameters.

Rating: 
Average: 5 (1 vote)

HumanViCe

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Host-virus interaction via host cellular components has been an important field of research in recent times. RNA interference mediated by short interfering RNAs and microRNAs (miRNA), is a widespread anti-viral defense strategy. Importantly, viruses also encode their own miRNAs. In recent times miRNAs were identified as key players in host-virus interaction. Furthermore, viruses were shown to exploit the host miRNA networks to suite their own need.

Rating: 
Average: 5 (1 vote)

sydSeq

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

In practice, identifying and interpreting the functional impacts of the regulatory relationships between micro-RNA and messenger-RNA is non-trivial. The sheer scale of possible micro-RNA and messenger-RNA interactions can make the interpretation of results difficult.

Rating: 
Average: 5 (1 vote)

SMEpred workbench

Submitted by ChenLiang on Mon, 01/09/2017 - 10:09

Chemical modifications have been extensively exploited to circumvent shortcomings in therapeutic applications of small interfering RNAs (siRNAs). However, experimental designing and testing of these siRNAs or chemically modified siRNAs (cm-siRNAs) involves enormous resources. Therefore, in-silico intervention in designing cm-siRNAs would be of utmost importance. We developed SMEpred workbench to predict the efficacy of normal siRNAs as well as cm-siRNAs using 3031 heterogeneous cm-siRNA sequences from siRNAmod database.

Rating: 
Average: 5 (1 vote)

PerM

Submitted by ChenLiang on Sun, 09/10/2017 - 20:07

The explosion of next-generation sequencing data has spawned the design of new algorithms and software tools to provide efficient mapping for different read lengths and sequencing technologies. In particular, ABI's sequencer (SOLiD system) poses a big computational challenge with its capacity to produce very large amounts of data, and its unique strategy of encoding sequence data into color signals.

Rating: 
Average: 5 (1 vote)

SparseMFEFold

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

RNA secondary structure prediction by energy minimization is the central computational tool for the analysis of structural non-coding RNAs and their interactions. Sparsification has been successfully applied to improve the time efficiency of various structure prediction algorithms while guaranteeing the same result; however, for many such folding problems, space efficiency is of even greater concern, particularly for long RNA sequences.

Rating: 
Average: 5 (1 vote)

RNAdualPF

Submitted by ChenLiang on Mon, 01/09/2017 - 10:11

BACKGROUND: RNA inverse folding is the problem of finding one or more sequences that fold into a user-specified target structure s 0, i.e. whose minimum free energy secondary structure is identical to the target s 0. Here we consider the ensemble of all RNA sequences that have low free energy with respect to a given target s 0. RESULTS: We introduce the program RNAdualPF, which computes the dual partition function Z (∗), defined as the sum of Boltzmann factors exp(-E(a,s 0)/RT) of all RNA nucleotide sequences a compatible with target structure s 0.

Rating: 
Average: 5 (1 vote)

SAMMate

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Next Generation Sequencing (NGS) technology generates tens of millions of short reads for each DNA/RNA sample. A key step in NGS data analysis is the short read alignment of the generated sequences to a reference genome. Although storing alignment information in the Sequence Alignment/Map (SAM) or Binary SAM (BAM) format is now standard, biomedical researchers still have difficulty accessing this information.

Rating: 
Average: 5 (1 vote)

Ebbie

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

DNA sequencing is used ubiquitously: from deciphering genomes to determining the primary sequence of small RNAs (smRNAs). The cloning of smRNAs is currently the most conventional method to determine the actual sequence of these important regulators of gene expression. Typical smRNA cloning projects involve the sequencing of hundreds to thousands of smRNA clones that are delimited at their 5' and 3' ends by fixed sequence regions. These primers result from the biochemical protocol used to isolate and convert the smRNA into clonable PCR products.

Rating: 
Average: 5 (1 vote)

ViralmiR

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

microRNAs (miRNAs) play a vital role in development, oncogenesis, and apoptosis by binding to mRNAs to regulate the posttranscriptional level of coding genes in mammals, plants, and insects. Recent studies have demonstrated that the expression of viral miRNAs is associated with the ability of the virus to infect a host. Identifying potential viral miRNAs from experimental sequence data is valuable for deciphering virus-host interactions. Thus far, a specific predictive model for viral miRNA identification has yet to be developed.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Virus