You are here

Human

CCmiR

Submitted by ChenLiang on Tue, 01/09/2018 - 17:39

The identification of microRNA (miRNA) target sites is important. In the past decade, dozens of computational methods have been developed to predict miRNA target sites. Despite their existence, rarely does a method consider the well-known competition and cooperation among miRNAs when attempts to discover target sites. To fill this gap, we developed a new approach called CCmiR, which takes the cooperation and competition of multiple miRNAs into account in a statistical model to predict their target sites.

Rating: 
Average: 5 (1 vote)

miRNAss

Submitted by ChenLiang on Tue, 01/09/2018 - 19:24

Although many machine learning techniques have been proposed for distinguishing miRNA hairpins from other stem-loop sequences, most of the current methods use supervised learning, which requires a very good set of positive and negative examples. Those methods have important practical limitations when they have to be applied to a real prediction task. First, there is the challenge of dealing with a scarce number of positive (well-known) pre-miRNA examples.

Rating: 
4
Average: 3.5 (2 votes)

miRprimer

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs are small but biologically important RNA molecules. Although different methods can be used for quantification of microRNAs, quantitative PCR is regarded as the reference that is used to validate other methods. Several commercial qPCR assays are available but they often come at a high price and the sequences of the primers are not disclosed. An alternative to commercial assays is to manually design primers but this work is tedious and, hence, not practical for the design of primers for a larger number of targets.

Rating: 
Average: 5 (1 vote)

SARS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The recognition of microRNA (miRNA)-binding residues in proteins is helpful to understand how miRNAs silence their target genes. It is difficult to use existing computational method to predict miRNA-binding residues in proteins due to the lack of training examples. To address this issue, unlabeled data may be exploited to help construct a computational model. Semisupervised learning deals with methods for exploiting unlabeled data in addition to labeled data automatically to improve learning performance, where no human intervention is assumed.

Rating: 
Average: 5 (1 vote)

YamiPred

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are small non-coding RNAs, which play a significant role in gene regulation. Predicting miRNA genes is a challenging bioinformatics problem and existing experimental and computational methods fail to deal with it effectively. We developed YamiPred, an embedded classification method that combines the efficiency and robustness of support vector machines (SVM) with genetic algorithms (GA) for feature selection and parameters optimization.

Rating: 
Average: 5 (1 vote)

MiRTDL

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) regulate genes that are associated with various diseases. To better understand miRNAs, the miRNA regulatory mechanism needs to be investigated and the real targets identified. Here, we present miRTDL, a new miRNA target prediction algorithm based on convolutional neural network (CNN). The CNN automatically extracts essential information from the input data rather than completely relying on the input dataset generated artificially when the precise miRNA target mechanisms are poorly known.

Rating: 
Average: 5 (1 vote)

ncRNAppi

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Currently, there are a number of databases which store microRNA (miRNA) information, and tools available which provide miRNA target prediction. In this article, we describe a novel web-based tool that integrate the miRNA-targeted mRNA data, protein-protein interactions (PPI) records, tissues, biochemical pathways, human disease and gene function information to establish a disease-related miRNA target pathway database. This database is unique in the sense that it links miRNA target genes with their PPI partners according to being tissue- and diseases-specific or both.

Rating: 
Average: 5 (1 vote)

Radiogenomics

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Magnetic Resonance Imaging (MRI) has been routinely used for the diagnosis and treatment of breast cancer. However, the relationship between the MRI tumor phenotypes and the underlying genetic mechanisms remains under-explored. We integrated multi-omics molecular data from The Cancer Genome Atlas (TCGA) with MRI data from The Cancer Imaging Archive (TCIA) for 91 breast invasive carcinomas.

Rating: 
Average: 5 (1 vote)

Mirin

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Exploring microRNA (miRNA) regulations and protein-protein interactions could reveal the molecular mechanisms responsible for complex biological processes. Mirin is a web-based application suitable for identifying functional modules from protein-protein interaction networks regulated by aberrant miRNAs under user-defined biological conditions such as cancers. The analysis involves combining miRNA regulations, protein-protein interactions between target genes, as well as mRNA and miRNA expression profiles provided by users.

Rating: 
Average: 5 (2 votes)

ncDR

Submitted by ChenLiang on Tue, 01/09/2018 - 16:58

As a promising field of individualized therapy, non-coding RNA pharmacogenomics promotes the understanding of different individual responses to certain drugs and acts as a reasonable reference for clinical treatment. However, relevant information is scattered across the published literature, which is inconvenient for researchers to explore non-coding RNAs that are involved in drug resistance. To address this, we systemically identified validated and predicted drug resistance-associated microRNAs and long non-coding RNAs through manual curation and computational analysis.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Human