You are here

Bacteria

NoiseMaker

Submitted by ChenLiang on Thu, 04/06/2017 - 18:47

High-throughput screening (HTS) is a common technique for both drug discovery and basic research, but researchers often struggle with how best to derive hits from HTS data. While a wide range of hit identification techniques exist, little information is available about their sensitivity and specificity, especially in comparison to each other. To address this, we have developed the open-source NoiseMaker software tool for generation of realistically noisy virtual screens.

Rating: 
Average: 5 (1 vote)

biRte

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

In the last years there has been an increasing effort to computationally model and predict the influence of regulators (transcription factors, miRNAs) on gene expression. Here we introduce biRte as a computationally attractive approach combining Bayesian inference of regulator activities with network reverse engineering. biRte integrates target gene predictions with different omics data entities (e.g. miRNA and mRNA data) into a joint probabilistic framework.

Rating: 
Average: 5 (1 vote)

birta

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

There have been many successful experimental and bioinformatics efforts to elucidate transcription factor (TF)-target networks in several organisms. For many organisms, these annotations are complemented by miRNA-target networks of good quality. Attempts that use these networks in combination with gene expression data to draw conclusions on TF or miRNA activity are, however, still relatively sparse.

Rating: 
Average: 5 (1 vote)

NqA

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

In this note, we propose an R function named NqA (Normalization qPCR Array, where qPCR is quantitative real-time polymerase chain reaction) suitable for the identification of a set of microRNAs (miRNAs) to be used for data normalization in view of subsequent validation studies with qPCR data.

Rating: 
Average: 5 (1 vote)

PACRAT

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Analysis of intergenic sequences for purposes such as the investigation of transcriptional signals or the identification of small RNA genes is frequently complicated by traditional biological database structures. Genome data is commonly treated as chromosome-length sequence records, detailed by gene calls demarcating subsequences of the chromosomes. Given this model, the determination of non-called subsequences between any gene and its nearest neighbors requires an exhaustive search of all gene calls associated with the chromosome.

Rating: 
Average: 5 (1 vote)

ARTS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

A fast growing number of non-coding RNAs have recently been discovered to play essential roles in many cellular processes. Similar to proteins, understanding the functions of these active RNAs requires methods for analyzing their tertiary structures. However, in contrast to the wide range of structure-based approaches available for proteins, there is still a lack of methods for studying RNA structures.

Rating: 
Average: 5 (1 vote)

DynaMod

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

A comprehensive analysis of enriched functional categories in differentially expressed genes is important to extract the underlying biological processes of genome-wide expression profiles. Moreover, identification of the network of significant functional modules in these dynamic processes is an interesting challenge. This study introduces DynaMod, a web-based application that identifies significant functional modules reflecting the change of modularity and differential expressions that are correlated with gene expression profiles under different conditions.

Rating: 
Average: 5 (1 vote)

ShrinkBayes

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Complex designs are common in (observational) clinical studies. Sequencing data for such studies are produced more and more often, implying challenges for the analysis, such as excess of zeros, presence of random effects and multi-parameter inference. Moreover, when sample sizes are small, inference is likely to be too liberal when, in a Bayesian setting, applying a non-appropriate prior or to lack power when not carefully borrowing information across features.

Rating: 
Average: 5 (1 vote)

Director

Submitted by ChenLiang on Tue, 01/09/2018 - 17:47

High-throughput measurement technologies have triggered a rise in large-scale cancer studies containing multiple levels of molecular data. While there are a number of efficient methods to analyze individual data types, there are far less that enhance data interpretation after analysis. We present the R package Director, a dynamic visualization approach to linking and interrogating multiple levels of molecular data after analysis for clinically meaningful, actionable insights.

Rating: 
5
Average: 4.5 (2 votes)

Pages

Subscribe to Bacteria