You are here

Arabidopsis

SMIRP

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The prediction of novel pre-microRNA (miRNA) from genomic sequence has received considerable attention recently. However, the majority of studies have focused on the human genome. Previous studies have demonstrated that sensitivity (correctly detecting true miRNA) is sustained when human-trained methods are applied to other species, however they have failed to report the dramatic drop in specificity (the ability to correctly reject non-miRNA sequences) in non-human genomes.

Rating: 
Average: 5 (1 vote)

SparseMFEFold

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

RNA secondary structure prediction by energy minimization is the central computational tool for the analysis of structural non-coding RNAs and their interactions. Sparsification has been successfully applied to improve the time efficiency of various structure prediction algorithms while guaranteeing the same result; however, for many such folding problems, space efficiency is of even greater concern, particularly for long RNA sequences.

Rating: 
Average: 5 (1 vote)

Automatic learning of pre-miRNAs from different species

Submitted by ChenLiang on Thu, 04/06/2017 - 17:26

Discovery of microRNAs (miRNAs) relies on predictive models for characteristic features from miRNA precursors (pre-miRNAs). The short length of miRNA genes and the lack of pronounced sequence features complicate this task. To accommodate the peculiarities of plant and animal miRNAs systems, tools for both systems have evolved differently. However, these tools are biased towards the species for which they were primarily developed and, consequently, their predictive performance on data sets from other species of the same kingdom might be lower.

Rating: 
Average: 5 (1 vote)

SBM

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Experimental identification of microRNA (miRNA) targets is a difficult and time consuming process. As a consequence several computational prediction methods have been devised in order to predict targets for follow up experimental validation. Current computational target prediction methods use only the miRNA sequence as input. With an increasing number of experimentally validated targets becoming available, utilising this additional information in the search for further targets may help to improve the specificity of computational methods for target site prediction.

Rating: 
Average: 5 (1 vote)

C-mii

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) have been known to play an important role in several biological processes in both animals and plants. Although several tools for miRNA and target identification are available, the number of tools tailored towards plants is limited, and those that are available have specific functionality, lack graphical user interfaces, and restrict the number of input sequences. Large-scale computational identifications of miRNAs and/or targets of several plants have been also reported.

Rating: 
Average: 5 (1 vote)

MiRAuto

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are a class of small RNAs that post-transcriptionally regulate gene expression in animals and plants. The recent rapid advancement in miRNA biology, including high-throughput sequencing of small RNA libraries, inspired the development of a bioinformatics software, miRAuto, which predicts putative miRNAs in model plant genomes computationally. Furthermore, miRAuto enables users to identify miRNAs in non-model plant species whose genomes have yet to be fully sequenced.

Rating: 
Average: 5 (1 vote)

OMICtools

Submitted by ChenLiang on Thu, 10/20/2016 - 20:44

Recent advances in 'omic' technologies have created unprecedented opportunities for biological research, but current software and database resources are extremely fragmented. OMICtools is a manually curated metadatabase that provides an overview of more than 4400 web-accessible tools related to genomics, transcriptomics, proteomics and metabolomics. All tools have been classified by omic technologies (next-generation sequencing, microarray, mass spectrometry and nuclear magnetic resonance) associated with published evaluations of tool performance.

Rating: 
Average: 5 (1 vote)

RDMAS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The diverse functions of ncRNAs critically depend on their structures. Mutations in ncRNAs disrupting the structures of functional sites are expected to be deleterious. RNA deleterious mutations have attracted wide attentions because some of them in cells result in serious disease, and some others in microbes influence their fitness.

Rating: 
Average: 5 (1 vote)

pssRNAMiner

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

In plants, short RNAs including approximately 21-nt microRNA (miRNA) and 21-nt trans-acting siRNA (ta-siRNA) compose a 'miRNA --> ta-siRNA --> target gene' cascade pathway that regulates gene expression at the posttranscriptional level. In this cascade, biogenesis of ta-siRNA clusters requires 21-nt intervals (i.e. phasing) and miRNA (phase-initiator) cleavage sites on its TAS transcript. Here, we report a novel web server, pssRNAMiner, which is developed to identify both the clusters of phased small RNAs as well as the potential phase-initiator.

Rating: 
Average: 5 (1 vote)

plantDARIO

Submitted by ChenLiang on Thu, 04/06/2017 - 18:49

High-throughput sequencing techniques have made it possible to assay an organism's entire repertoire of small non-coding RNAs (ncRNAs) in an efficient and cost-effective manner. The moderate size of small RNA-seq datasets makes it feasible to provide free web services to the research community that provide many basic features of a small RNA-seq analysis, including quality control, read normalization, ncRNA quantification, and the prediction of putative novel ncRNAs. DARIO is one such system that so far has been focussed on animals.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Arabidopsis