You are here

Random Forest

Random forests or random decision forests are an ensemble learning method for classification, regression and other tasks, that operate by constructing a multitude of decision trees at training time and outputting the class that is the mode of the classes (classification) or mean prediction (regression) of the individual trees. [Source: Wikipedia ]

HeteroMirPred

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

An ensemble classifier approach for microRNA precursor (pre-miRNA) classification was proposed based upon combining a set of heterogeneous algorithms including support vector machine (SVM), k-nearest neighbors (kNN) and random forest (RF), then aggregating their prediction through a voting system. Additionally, the proposed algorithm, the classification performance was also improved using discriminative features, self-containment and its derivatives, which have shown unique structural robustness characteristics of pre-miRNAs.

Rating: 
Average: 5 (1 vote)

Discriminant

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Computational discovery of microRNAs (miRNA) is based on pre-determined sets of features from miRNA precursors (pre-miRNA). Some feature sets are composed of sequence-structure patterns commonly found in pre-miRNAs, while others are a combination of more sophisticated RNA features. In this work, we analyze the discriminant power of seven feature sets, which are used in six pre-miRNA prediction tools. The analysis is based on the classification performance achieved with these feature sets for the training algorithms used in these tools.

Rating: 
Average: 5 (1 vote)

SMIRP

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The prediction of novel pre-microRNA (miRNA) from genomic sequence has received considerable attention recently. However, the majority of studies have focused on the human genome. Previous studies have demonstrated that sensitivity (correctly detecting true miRNA) is sustained when human-trained methods are applied to other species, however they have failed to report the dramatic drop in specificity (the ability to correctly reject non-miRNA sequences) in non-human genomes.

Rating: 
Average: 5 (1 vote)

TarPmiR

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

The identification of microRNA (miRNA) target sites is fundamentally important for studying gene regulation. There are dozens of computational methods available for miRNA target site prediction. Despite their existence, we still cannot reliably identify miRNA target sites, partially due to our limited understanding of the characteristics of miRNA target sites.

Rating: 
Average: 5 (1 vote)

miRLocator

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are a class of short, non-coding RNA that play regulatory roles in a wide variety of biological processes, such as plant growth and abiotic stress responses. Although several computational tools have been developed to identify primary miRNAs and precursor miRNAs (pre-miRNAs), very few provide the functionality of locating mature miRNAs within plant pre-miRNAs.

Rating: 
Average: 5 (1 vote)

miSTAR

Submitted by ChenLiang on Mon, 01/09/2017 - 11:43

In microRNA (miRNA) target prediction, typically two levels of information need to be modeled: the number of potential miRNA binding sites present in a target mRNA and the genomic context of each individual site. Single model structures insufficiently cope with this complex training data structure, consisting of feature vectors of unequal length as a consequence of the varying number of miRNA binding sites in different mRNAs. To circumvent this problem, we developed a two-layered, stacked model, in which the influence of binding site context is separately modeled.

Rating: 
Average: 5 (1 vote)

Automatic learning of pre-miRNAs from different species

Submitted by ChenLiang on Thu, 04/06/2017 - 17:26

Discovery of microRNAs (miRNAs) relies on predictive models for characteristic features from miRNA precursors (pre-miRNAs). The short length of miRNA genes and the lack of pronounced sequence features complicate this task. To accommodate the peculiarities of plant and animal miRNAs systems, tools for both systems have evolved differently. However, these tools are biased towards the species for which they were primarily developed and, consequently, their predictive performance on data sets from other species of the same kingdom might be lower.

Rating: 
Average: 5 (1 vote)

Mirnacle

Submitted by ChenLiang on Thu, 04/06/2017 - 19:26

MicroRNAs (miRNAs) are key gene expression regulators in plants and animals. Therefore, miRNAs are involved in several biological processes, making the study of these molecules one of the most relevant topics of molecular biology nowadays. However, characterizing miRNAs in vivo is still a complex task. As a consequence, in silico methods have been developed to predict miRNA loci. A common ab initio strategy to find miRNAs in genomic data is to search for sequences that can fold into the typical hairpin structure of miRNA precursors (pre-miRNAs).

Rating: 
Average: 5 (1 vote)

Mirnovo

Submitted by ChenLiang on Tue, 01/09/2018 - 19:25

The discovery of microRNAs (miRNAs) remains an important problem, particularly given the growth of high-throughput sequencing, cell sorting and single cell biology. While a large number of miRNAs have already been annotated, there may well be large numbers of miRNAs that are expressed in very particular cell types and remain elusive. Sequencing allows us to quickly and accurately identify the expression of known miRNAs from small RNA-Seq data. The biogenesis of miRNAs leads to very specific characteristics observed in their sequences.

Rating: 
4
Average: 3.5 (2 votes)

miRNA_code

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNA (miRNA), which is short non-coding RNA, plays a pivotal role in the regulation of many biological processes and affects the stability and/or translation of mRNA. Recently, machine learning algorithms were developed to predict potential miRNA targets. Most of these methods are robust but are not sensitive to redundant or irrelevant features. Despite their good performance, the relative importance of each feature is still unclear.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to Random Forest