Overview

miRToolsGallery is a database of miRNA tools. It provides the following services: (a) Search(b) Filter and (c) Rank the tools. Our database aim to make it easy for researchers to find the right tools or data source for their own specific study in miRNA field. And it’s also very convenient for writing a tools review paper. Now we have collect above 1000 tools. miRToolsGallery will update when every new 100 tools add in. The first public online was in 1st Oct, 2016, and latest update time is 22nd April, 2018(v1.2). 

  • Filter and Rank : Give user max flexibility to filter and rank the tools and return a table view.
  • Tutorials : Give two application examples and tell user how to use miRToolsGallery.
  • Tags Gallery : Print Word Cloud for the tags.
  • Logo Gallery : Randomly list logo of tools in the database, give each tool evenly opportunity to be find by user.  
  • Review Paper Gallery : List the collection of miRNA tools review papers.
  • Submit Tools : We still need all user's kindly help to improve the miRToolsGallery.
  • Contact us : User can get in touch with us through this page to send feedback.

miRPD

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are a highly abundant class of non-coding RNA genes involved in cellular regulation and thus also diseases. Despite miRNAs being important disease factors, miRNA-disease associations remain low in number and of variable reliability. Furthermore, existing databases and prediction methods do not explicitly facilitate forming hypotheses about the possible molecular causes of the association, thereby making the path to experimental follow-up longer.

Rating: 
Average: 5 (1 vote)

mirMark

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MiRNAs play important roles in many diseases including cancers. However computational prediction of miRNA target genes is challenging and the accuracies of existing methods remain poor. We report mirMark, a new machine learning-based method of miRNA target prediction at the site and UTR levels. This method uses experimentally verified miRNA targets from miRecords and mirTarBase as training sets and considers over 700 features.

Rating: 
Average: 5 (1 vote)

SFGD

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Soybean (Glycine max L.) is one of the world's most important leguminous crops producing high-quality protein and oil. Increasing the relative oil concentration in soybean seeds is many researchers' goal, but a complete analysis platform of functional annotation for the genes involved in the soybean acyl-lipid pathway is still lacking. Following the success of soybean whole-genome sequencing, functional annotation has become a major challenge for the scientific community. Whole-genome transcriptome analysis is a powerful way to predict genes with biological functions.

Rating: 
Average: 5 (1 vote)

CePa

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

CePa is an R package aiming to find significant pathways through network topology information. The package has several advantages compared with current pathway enrichment tools. First, pathway node instead of single gene is taken as the basic unit when analysing networks to meet the fact that genes must be constructed into complexes to hold normal functions. Second, multiple network centralities are applied simultaneously to measure importance of nodes from different aspects to make a full view on the biological system.

Rating: 
Average: 5 (1 vote)

miRvar

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

microRNAs are a recently discovered and well studied class of small noncoding functional RNAs. The regulatory role of microRNAs (miRNAs) has been well studied in a wide variety of biological processes but there have been no systematic effort to understand and analyze the genetic variations in miRNA loci and study its functional consequences.

Rating: 
Average: 5 (1 vote)

ncRNAclassifier

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Inverted repeat genes encode precursor RNAs characterized by hairpin structures. These RNA hairpins are then metabolized by biosynthetic pathways to produce functional small RNAs. In eukaryotic genomes, short non-autonomous transposable elements can have similar size and hairpin structures as non-coding precursor RNAs. This resemblance leads to problems annotating small RNAs.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to miRToolsGallery RSS