Overview

miRToolsGallery is a database of miRNA tools. It provides the following services: (a) Search(b) Filter and (c) Rank the tools. Our database aim to make it easy for researchers to find the right tools or data source for their own specific study in miRNA field. And it’s also very convenient for writing a tools review paper. Now we have collect above 1000 tools. miRToolsGallery will update when every new 100 tools add in. The first public online was in 1st Oct, 2016, and latest update time is 22nd April, 2018(v1.2). 

  • Filter and Rank : Give user max flexibility to filter and rank the tools and return a table view.
  • Tutorials : Give two application examples and tell user how to use miRToolsGallery.
  • Tags Gallery : Print Word Cloud for the tags.
  • Logo Gallery : Randomly list logo of tools in the database, give each tool evenly opportunity to be find by user.  
  • Review Paper Gallery : List the collection of miRNA tools review papers.
  • Submit Tools : We still need all user's kindly help to improve the miRToolsGallery.
  • Contact us : User can get in touch with us through this page to send feedback.

GED

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Reproductive infertility affects seventh of couples, which is most attributed to the obstacle of gametogenesis. Characterizing the epigenetic modification factors involved in gametogenesis is fundamental to understand the molecular mechanisms and to develop treatments for human infertility. Although the genetic factors have been implicated in gametogenesis, no dedicated bioinformatics resource for gametogenesis is available.

Rating: 
Average: 5 (1 vote)

MITHrIL

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Prediction of phenotypes from high-dimensional data is a crucial task in precision biology and medicine. Many technologies employ genomic biomarkers to characterize phenotypes. However, such elements are not sufficient to explain the underlying biology. To improve this, pathway analysis techniques have been proposed. Nevertheless, such methods have shown lack of accuracy in phenotypes classification.

Rating: 
5
Average: 4.5 (2 votes)

IntNetLncSim

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Increasing evidence indicated that long non-coding RNAs (lncRNAs) were involved in various biological processes and complex diseases by communicating with mRNAs/miRNAs each other. Exploiting interactions between lncRNAs and mRNA/miRNAs to lncRNA functional similarity (LFS) is an effective method to explore function of lncRNAs and predict novel lncRNA-disease associations.

Rating: 
5
Average: 4.5 (2 votes)

IsomiR Bank

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

: Next-Generation Sequencing (NGS) technology has revealed that microRNAs (miRNAs) are capable of exhibiting frequent differences from their corresponding mature reference sequences, generating multiple variants: the isoforms of miRNAs (isomiRs). These isomiRs mainly originate via the imprecise and alternative cleavage during the pre-miRNA processing and post-transcriptional modifications that influence miRNA stability, their sub-cellular localization and target selection.

Rating: 
Average: 5 (1 vote)

C2Analyzer

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) interact with their target mRNAs and regulate biological processes at post-transcriptional level. While one miRNA can target many mRNAs, a single mRNA can also be targeted by a set of miRNAs. The targeted mRNAs may be involved in different biological processes that are described by gene ontology (GO) terms. The major challenges involved in analyzing these multitude regulations include identification of the combinatorial regulation of miRNAs as well as determination of the co-functionally-enriched miRNA pairs.

Rating: 
Average: 5 (1 vote)

Mi-DISCOVERER

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

MicroRNAs (miRNAs) are 22 nucleotides non-coding RNAs that play pivotal regulatory roles in diverse organisms including the humans and are difficult to be identified due to lack of either sequence features or robust algorithms to efficiently identify. Therefore, we made a tool that is Mi-Discoverer for the detection of miRNAs in human genome. The tools used for the development of software are Microsoft Office Access 2003, the JDK version 1.6.0, BioJava version 1.0, and the NetBeans IDE version 6.0.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to miRToolsGallery RSS