Overview

miRToolsGallery is a database of miRNA tools. It provides the following services: (a) Search(b) Filter and (c) Rank the tools. Our database aim to make it easy for researchers to find the right tools or data source for their own specific study in miRNA field. And it’s also very convenient for writing a tools review paper. Now we have collect above 1000 tools. miRToolsGallery will update when every new 100 tools add in. The first public online was in 1st Oct, 2016, and latest update time is 22nd April, 2018(v1.2). 

  • Filter and Rank : Give user max flexibility to filter and rank the tools and return a table view.
  • Tutorials : Give two application examples and tell user how to use miRToolsGallery.
  • Tags Gallery : Print Word Cloud for the tags.
  • Logo Gallery : Randomly list logo of tools in the database, give each tool evenly opportunity to be find by user.  
  • Review Paper Gallery : List the collection of miRNA tools review papers.
  • Submit Tools : We still need all user's kindly help to improve the miRToolsGallery.
  • Contact us : User can get in touch with us through this page to send feedback.

MiRE

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

To provide a set of useful analysis tools for the researchers to explore the microRNA data.
The R language was used for generating the Graphical Users Interface and implementing most functions. Some Practical Extraction and Report Language (Perl) scripts were used for parsing source files.

Rating: 
Average: 5 (2 votes)

RDDpred

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

RNA-editing is an important post-transcriptional RNA sequence modification performed by two catalytic enzymes, "ADAR"(A-to-I) and "APOBEC"(C-to-U). By utilizing high-throughput sequencing technologies, the biological function of RNA-editing has been actively investigated. Currently, RNA-editing is considered to be a key regulator that controls various cellular functions, such as protein activity, alternative splicing pattern of mRNA, and substitution of miRNA targeting site.

Rating: 
Average: 5 (1 vote)

SMiR-NBI

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Drug-target interaction (DTI) is the basis of drug discovery and design. It is time consuming and costly to determine DTI experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on complex network theory, three supervised inference methods were developed here to predict DTI and used for drug repositioning, namely drug-based similarity inference (DBSI), target-based similarity inference (TBSI) and network-based inference (NBI). Among them, NBI performed best on four benchmark data sets.

Rating: 
Average: 5 (1 vote)

iNMF

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Recent advances in high-throughput omics technologies have enabled biomedical researchers to collect large-scale genomic data. As a consequence, there has been growing interest in developing methods to integrate such data to obtain deeper insights regarding the underlying biological system. A key challenge for integrative studies is the heterogeneity present in the different omics data sources, which makes it difficult to discern the coordinated signal of interest from source-specific noise or extraneous effects.

Rating: 
Average: 4.5 (2 votes)

Mirin

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Exploring microRNA (miRNA) regulations and protein-protein interactions could reveal the molecular mechanisms responsible for complex biological processes. Mirin is a web-based application suitable for identifying functional modules from protein-protein interaction networks regulated by aberrant miRNAs under user-defined biological conditions such as cancers. The analysis involves combining miRNA regulations, protein-protein interactions between target genes, as well as mRNA and miRNA expression profiles provided by users.

Rating: 
Average: 5 (2 votes)

PMF NETWORK MODEL

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

microRNAs (miRNAs) are relevant in the pathogenesis of primary myelofibrosis (PMF) but our understanding is limited to specific target genes and the overall systemic scenario islacking. By both knowledge-based and ab initio approaches for comparative analysis of CD34+ cells of PMF patients and healthy controls, we identified the deregulated pathways involving miRNAs and genes and new transcriptional and post-transcriptional regulatory circuits in PMF cells.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to miRToolsGallery RSS