Overview

miRToolsGallery is a database of miRNA tools. It provides the following services: (a) Search(b) Filter and (c) Rank the tools. Our database aim to make it easy for researchers to find the right tools or data source for their own specific study in miRNA field. And it’s also very convenient for writing a tools review paper. Now we have collect above 1000 tools. miRToolsGallery will update when every new 100 tools add in. The first public online was in 1st Oct, 2016, and latest update time is 22nd April, 2018(v1.2). 

  • Filter and Rank : Give user max flexibility to filter and rank the tools and return a table view.
  • Tutorials : Give two application examples and tell user how to use miRToolsGallery.
  • Tags Gallery : Print Word Cloud for the tags.
  • Logo Gallery : Randomly list logo of tools in the database, give each tool evenly opportunity to be find by user.  
  • Review Paper Gallery : List the collection of miRNA tools review papers.
  • Submit Tools : We still need all user's kindly help to improve the miRToolsGallery.
  • Contact us : User can get in touch with us through this page to send feedback.

CSmiRTar

Submitted by ChenLiang on Sun, 09/10/2017 - 16:52

MicroRNAs (miRNAs) are functional RNA molecules which play important roles in the post-transcriptional regulation. miRNAs regulate their target genes by repressing translation or inducing degradation of the target genes' mRNAs. Many databases have been constructed to provide computationally predicted miRNA targets. However, they cannot provide the miRNA targets expressed in a specific tissue and related to a specific disease at the same time. Moreover, they cannot provide the common targets of multiple miRNAs and the common miRNAs of multiple genes at the same time.

Rating: 
Average: 5 (1 vote)

cre-siRNA

Submitted by ChenLiang on Sun, 09/10/2017 - 16:49

MicroRNAs (miRNAs) in eukaryotes guide post-transcriptional regulation by means of targeted RNA degradation and translational arrest. They are released by a Dicer nuclease as a 21-24-nucleotide RNA duplex from a precursor in which an imperfectly matched inverted repeat forms a partly double-stranded region. One of the two strands is then recruited by an Argonaute nuclease that is the effector protein of the silencing mechanism. Short interfering RNAs (siRNAs), which are similar to miRNAs, are also produced by Dicer but the precursors are perfectly double-stranded RNA.

Rating: 
Average: 5 (1 vote)

contextMMIA

Submitted by ChenLiang on Sun, 09/10/2017 - 16:47

miRNAs are small non-coding RNAs that regulate gene expression by binding to the 3'-UTR of genes. Many recent studies have reported that miRNAs play important biological roles by regulating specific mRNAs or genes. Many sequence-based target prediction algorithms have been developed to predict miRNA targets. However, these methods are not designed for condition-specific target predictions and produce many false positives; thus, expression-based target prediction algorithms have been developed for condition-specific target predictions.

Rating: 
Average: 5 (1 vote)

BUFET

Submitted by ChenLiang on Sun, 09/10/2017 - 16:46

A group of miRNAs can regulate a biological process by targeting genes involved in the process. The unbiased miRNA functional enrichment analysis is the most precise in silico approach to predict the biological processes that may be regulated by a given miRNA group. However, it is computationally intensive and significantly more expensive than its alternatives.

Rating: 
Average: 5 (1 vote)

BioM2MetDisease

Submitted by ChenLiang on Sun, 09/10/2017 - 16:33

BioM2MetDisease is a manually curated database that aims to provide a comprehensive and experimentally supported resource of associations between metabolic diseases and various biomolecules. Recently, metabolic diseases such as diabetes have become one of the leading threats to people's health. Metabolic disease associated with alterations of multiple types of biomolecules such as miRNAs and metabolites.

Rating: 
Average: 5 (1 vote)

1-CMDb

Submitted by ChenLiang on Sun, 09/10/2017 - 16:31

The one-carbon metabolism pathway is vital in maintaining tissue homeostasis by driving the critical reactions of folate and methionine cycles. A myriad of genetic and epigenetic events mark the rate of reactions in a tissue-specific manner. Integration of these to predict and provide personalized health management requires robust computational tools that can process multiomics data. The DNA sequences that may determine the chain of biological events and the endpoint reactions within one-carbon metabolism genes remain to be comprehensively recorded.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to miRToolsGallery RSS