Overview

miRToolsGallery is a database of miRNA tools. It provides the following services: (a) Search(b) Filter and (c) Rank the tools. Our database aim to make it easy for researchers to find the right tools or data source for their own specific study in miRNA field. And it’s also very convenient for writing a tools review paper. Now we have collect above 1000 tools. miRToolsGallery will update when every new 100 tools add in. The first public online was in 1st Oct, 2016, and latest update time is 22nd April, 2018(v1.2). 

  • Filter and Rank : Give user max flexibility to filter and rank the tools and return a table view.
  • Tutorials : Give two application examples and tell user how to use miRToolsGallery.
  • Tags Gallery : Print Word Cloud for the tags.
  • Logo Gallery : Randomly list logo of tools in the database, give each tool evenly opportunity to be find by user.  
  • Review Paper Gallery : List the collection of miRNA tools review papers.
  • Submit Tools : We still need all user's kindly help to improve the miRToolsGallery.
  • Contact us : User can get in touch with us through this page to send feedback.

MIR@NT@N

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

To understand biological processes and diseases, it is crucial to unravel the concerted interplay of transcription factors (TFs), microRNAs (miRNAs) and their targets within regulatory networks and fundamental sub-networks. An integrative computational resource generating a comprehensive view of these regulatory molecular interactions at a genome-wide scale would be of great interest to biologists, but is not available to date.

Rating: 
Average: 5 (1 vote)

sMBPLS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Eukaryotic gene expression (GE) is subjected to precisely coordinated multi-layer controls, across the levels of epigenetic, transcriptional and post-transcriptional regulations. Recently, the emerging multi-dimensional genomic dataset has provided unprecedented opportunities to study the cross-layer regulatory interplay. In these datasets, the same set of samples is profiled on several layers of genomic activities, e.g. copy number variation (CNV), DNA methylation (DM), GE and microRNA expression (ME).

Rating: 
Average: 5 (1 vote)

ChroMoS

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Genome-wide association studies and re-sequencing projects are revealing an increasing number of disease-associated SNPs, a large fraction of which are non-coding. Although they could have relevance for disease susceptibility and progression, the lack of information about regulatory regions impedes the assessment of their functionality. Here we present a web server, ChroMoS (Chromatin Modified SNPs), which combines genetic and epigenetic data with the goal of facilitating SNPs' classification, prioritization and prediction of their functional consequences.

Rating: 
Average: 5 (1 vote)

miRNA Body Map

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

 

Rating: 
Average: 5 (1 vote)

LoessM

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Microarray normalization is a fundamental step in removing systematic bias and noise variability caused by technical and experimental artefacts. Several approaches, suitable for large-scale genome arrays, have been proposed and shown to be effective in the reduction of systematic errors. Most of these methodologies are based on specific assumptions that are reasonable for whole-genome arrays, but possibly unsuitable for small microRNA (miRNA) platforms.

Rating: 
Average: 5 (1 vote)

More complete gene silencing by fewer siRNAs

Submitted by ChenLiang on Fri, 09/02/2016 - 21:59

Highly accurate knockdown functional analyses based on RNA interference (RNAi) require the possible most complete hydrolysis of the targeted mRNA while avoiding the degradation of untargeted genes (off-target effects). This in turn requires significant improvements to target selection for two reasons. First, the average silencing activity of randomly selected siRNAs is as low as 62%. Second, applying more than five different siRNAs may lead to saturation of the RNA-induced silencing complex (RISC) and to the degradation of untargeted genes.

Rating: 
Average: 5 (1 vote)

Pages

Subscribe to miRToolsGallery RSS